CHANCE
NO. 2

INSTRUMENT FLYING AND NAVIGATION FOR ARMY AVIATORS

This change updates the data pertinent to the training of rotary-wing aviators in tactical instrument flight. It covers the considerations for employment of tactical instrument flight; procedures for construction of tactical instrument airways and safety zones; and a recommended program of instruction for tactical instrument flight training.

1. Remove old pages and insert new pages as indicated.

Remove pages

\[
\begin{align*}
\checkmark & \text{i and ii} \\
\checkmark & 22.1-22.31 \\
\checkmark & A-1, A-2 \\
\checkmark & \text{Index -7,-8,-9}
\end{align*}
\]

Insert pages

\[
\begin{align*}
\checkmark & \text{i and ii} \\
\checkmark & 22.1-22.32 \\
\checkmark & A-1, A-2 \\
\checkmark & \text{Index -7,-8,-9}
\end{align*}
\]

2. File this change sheet in the front of the publication for reference purposes.

*This change supersedes Cl, 7 July 1978.
By Order of the Secretary of the Army:

BERNARD W. ROGERS
General, United States Army
Chief of Staff

Official:

J. C. PENNINGTON
Major General, United States Army
The Adjutant General

DISTRIBUTION:

Active Army and USAR: To be distributed in accordance with DA Form 12-11A, Requirements for Army Aviation Techniques and Procedures (Qty rqr block no. 8); plus DA Form 12-31, Section 1, Operator and Organizational Requirements for all fixed and Rotor wing aircraft (Qty rqr block no. 321).

ARNG: To be distributed in accordance with DA Form 12-11A, Requirements for Army Aviation Techniques and Procedures (Qty rqr block no. 8).

Additional copies can be requisitioned from the US Army Adjutant General Publications Center, 2800 Eastern Boulevard, Baltimore, MD 21220.
INSTRUMENT FLYING AND NAVIGATION FOR ARMY AVIATORS

FM 1-5, 31 March 1976, is changed as follows:

1. Remove old pages and insert new pages as indicated below.

<table>
<thead>
<tr>
<th>Remove pages</th>
<th>Insert pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>i and ii</td>
<td>i and ii</td>
</tr>
<tr>
<td>22-1 through 22-17</td>
<td>22-1 through 22-31</td>
</tr>
<tr>
<td>A-1</td>
<td>A-1, A-2</td>
</tr>
<tr>
<td>E-1·E-4</td>
<td>None</td>
</tr>
<tr>
<td>Index-7,-8,-9</td>
<td>Index-7,-8,-9</td>
</tr>
</tbody>
</table>

2. File this change sheet in front of the publication for reference purposes.
By Order of the Secretary of the Army:

BERNARD W. ROGERS
General, United States Army
Chief of Staff

Official:

J. C. PENNINGTON
Brigadier General, United States Army
The Adjutant General

DISTRIBUTION:

.Active Army and USAR: To be distributed in accordance with DA Form 12-11A, Requirements for Army Aviation Techniques and Procedures (Qty rqr block no. 8); plus: DA Form 12-31, Section I, Operator and Organizational Requirements for all Fixed and Rotor Wing Aircraft (Qty rqr block no. 321).

.ARNG: To be distributed in accordance with DA Form 12-11A, Requirements for Army Aviation Techniques and Procedures (Qty rqr block no. 8).

Additional copies can be requisitioned (DA Form 17) from the US Army Adjutant General Publications Center, 2800 Eastern Boulevard, Baltimore, MD 21220.

* U.S. GOVERNMENT PRINTING OFFICE: 1978--735-082/ 227
INSTRUMENT FLYING AND NAVIGATION FOR ARMY AVIATORS

PART ONE. ATTITUDE INSTRUMENT FLYING

CHAPTER 1. INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. The Magnetic Compass</td>
<td>1-1—1-3</td>
<td>1-1</td>
</tr>
<tr>
<td>II. Gyroscopic Principles</td>
<td>2-1—2-5</td>
<td>2-1</td>
</tr>
<tr>
<td>III. Gyroscopic Instrument Power Sources</td>
<td>2-6—2-8</td>
<td>2-4</td>
</tr>
<tr>
<td>IV. Gyro Heading Indicator</td>
<td>2-9—2-11</td>
<td>2-5</td>
</tr>
<tr>
<td>V. Attitude Indicators</td>
<td>2-12, 2-13</td>
<td>2-4</td>
</tr>
<tr>
<td>VI. Turn-and-Slip Indicator</td>
<td>2-14—2-18</td>
<td>2-8</td>
</tr>
<tr>
<td>VII. Slaved Gyro Compass Systems</td>
<td>2-19—2-21</td>
<td>2-11</td>
</tr>
<tr>
<td>VIII. The Pitot-Static System</td>
<td>2-22—2-24</td>
<td>2-12</td>
</tr>
<tr>
<td>IX. The Pressure Altimeter</td>
<td>2-25—2-27</td>
<td>2-16</td>
</tr>
<tr>
<td>X. The Airspeed Indicator</td>
<td>2-28—2-33</td>
<td>2-16</td>
</tr>
<tr>
<td>XI. The Vertical Speed Indicator</td>
<td>2-34—2-36</td>
<td>2-22</td>
</tr>
</tbody>
</table>

CHAPTER 2. FLIGHT INSTRUMENTS AND SYSTEMS

CHAPTER 3. SENSATIONS OF INSTRUMENT FLIGHT

CHAPTER 4. POWER, PITCH ATTITUDE, AND BANK CONTROL THROUGH INSTRUMENTS FOR FIXED AND ROTARY WING AIRCRAFT

CHAPTER 5. BASIC INSTRUMENT MANEUVERS

CHAPTER 6. PROFICIENCY MANEUVERS (FIXED WING)

PART TWO. AIR NAVIGATION

CHAPTER 7. GENERAL

CHAPTER 8. BASIC CONCEPTS OF AIR NAVIGATION

CHAPTER 9. NAVIGATION CHARTS

CHAPTER 10. CHART READING, PILOTAGE, AND NAVIGATION FOR TERRAIN FLYING

CHAPTER 11. PLOTTING AND MEASURING

CHAPTER 12. INSTRUMENTS USED FOR DEAD RECKONING NAVIGATION

CHAPTER 13. WIND AND ITS EFFECTS

CHAPTER 14. THE DEAD RECKONING (DR) COMPUTER

This manual supersedes TM 1-215, 8 September 1964 and TM 1-225, 9 December 1968, including all changes.
CHAPTER 15. RADIO PRINCIPLES ... 15-1—15-14 15-1
 16. VHF OMNIDIRECTIONAL RANGE SYSTEM (VOR) 16-1 — 16-6 16-1
 Section I. Components and Operation 16-1 — 16-5 16-1
 II. Flight Procedures Using the VOR 16-6—16-13 16-5
 III. Receiver Checks ... 16-14—16-20 16-19
 IV. VOR Station Classification 16-21, 16-22 16-20
CHAPTER 17. ADF AND MANUAL LOOP PROCEDURES 17-1—17-3 17-1
 Section I. Characteristics and Components 17-1—17-3 17-1
 II. Automatic Direction Finder Flight Procedures 17-4—17-11 17-1
 III. Automatic Direction Finder Flight Procedures Using Relative Bearings 17-12—17-21 17-8
 IV. Manual (Loop) Operation of the ARN-59 17-22—17-26 17-14
CHAPTER 18. INTRODUCTION TO INSTRUMENT APPROACH PROCEDURES 18-1—18-4 18-1
 Section I. Instrument Approaches 18-1—18-4 18-1
 II. Feeder Routes/Standard Terminal Arrival Routes (STARS) 18-5—18-7 18-4
 III. Procedure Turns .. 18-8—18-13 18-9
 IV. Holding .. 18-14—18-24 18-10
CHAPTER 19. VOR AND NDB APPROACHES 19-1—19-9 19-1
 Section I. Approach Charts ... 19-1, 19-2 19-1
 II. Typical VOR Approach ... 19-3—19-9 19-3
 III. Typical NDB Approach Using ADF Procedures 19-10—19-15 19-6
CHAPTER 20. INSTRUMENT LANDING SYSTEM 20-1—20-10 20-1
 Section I. General ... 20-1, 20-2 20-1
 II. Operation and Flight Use 20-3—20-10 20-2
CHAPTER 21. RADAR ... 21-1—21-17 21-1
 Section I. Air Traffic Control Radar 21-1—21-3 21-1
 II. Radar Air Traffic Control Procedures 21-4—21-12 21-1
 III. Transponder Operations 21-13, 21-14 21-6
 IV. Ground Weather Radar ... 21-15—21-17 21-7
CHAPTER 22. TACTICAL INSTRUMENT FLIGHT 22-1—22-27 22-1
 Section I. General ... 22-1—22-3 22-1
 II. Tactical Employment Considerations 22-4—22-9 22-1
 III. Tactical Instrument Flight Planning 22-10—22-18 22-7
 IV. Training ... 22-19, 22-20 22-27
APPENDIX A. REFERENCES .. 22-1—A-1 22-1
B. ATC SHORTHAND SYMBOLS ... B-1
C. IFR FLIGHT PLANNING ... C-1
D. FM HOMING .. D-1
INDEX ... Index-1
PART ONE
ATTITUDE INSTRUMENT FLYING

CHAPTER 1
INTRODUCTION

1–1. Purpose
This manual provides the fundamentals, procedures, and techniques for attitude instrument flying and air navigation.

1–2. Scope
Part I covers the introduction and various aspects of attitude instrument flying; Part II covers air navigation.

a. Part I, Attitude Instrument Flying. Attitude instrument flying is the art of controlling the performance and attitude of an aircraft by reference to instruments. This part covers flight instruments and their systems, a description of inflight forces and sensations, instrument interpretation and aircraft control techniques, and procedures for the performance of fixed wing and rotary wing flight maneuvers by instruments.

b. Part II, Air Navigation. Air navigation is the art of directing an aircraft along a desired course and determining its position on this course at any time. Such navigation may be by means of pilotage, dead reckoning, or radio navigational aids, and includes those procedures which are used during instrument flight in directing the aircraft to a safe landing. This part contains the following:

(1) A discussion of the basic concepts and the implements of air navigation which assist the aviator in planning and conducting a flight by means of pilotage and/or dead reckoning.

(2) Information on radio navigational aids and their employment in flight.

(3) A discussion of the facilities and procedures peculiar to instrument approaches.

1–3. Comments
Users of this manual are encouraged to submit recommended changes or comments to improve it. Comments should be keyed to the specific page, paragraph, and line of the text in which changes are recommended. Reasons should be provided for each comment to insure understanding and complete evaluation. Comments should be prepared using DA Form 2028 (Recommended Changes to Publications and Blank Forms) and forwarded direct to Commander, United States Army Aviation Center, ATTN: ATZQ–TD–TL–GP, Fort Rucker, Alabama 36362.
CHAPTER 2
FLIGHT INSTRUMENTS AND SYSTEMS

Section I. THE MAGNETIC COMPASS

2–1. General

There are numerous types of heading indicators. Most are complex and require a power source for operation. The magnetic compass (fig 2–1) is simple in construction, requires no external power source, and has a high reliability factor. It utilizes the Earth's magnetic field to indicate the heading of the aircraft.

2–2. Basic Magnetism

A magnet is a piece of metal that has the property of attracting another metal. When freely suspended, a bar magnet will align approximately in a north and south direction. The force of attraction is greatest at a point near the end (pole) of the magnet. Lines of force flow out from each pole in all directions, eventually bending around and returning to the other pole. The area through which these lines of force flow is called the field of the magnet. The end of the magnet that seeks north is called the North Pole.

2–3. The Earth As a Magnet

The Earth is a magnetized body and is comparable to a huge magnet, the ends of which are several hundred miles below the Earth's surface.

a. Location of Magnetic Poles. The magnetic poles do not coincide with the Earth's geographic poles (fig 2–2). The approximate location of the north magnetic pole is 71° N and 96° W, and the south magnetic pole is 72° S and 157° E.

b. Dip Angle. The lines of force in the Earth's magnetic field are parallel to the Earth's surface at the magnetic equator and they curve increasingly downward when moving closer to the magnetic poles. In general, when a magnetic needle is placed on one of the lines of force (fig 2–2), it will assume the same direction and position of the actual line of force. The Earth's magnetic field has both horizontal and vertical components (fig 2–2). Only the horizontal component is used for direction finding. If a magnetic needle is placed on a horizontal axis so that its vertical movement is free, it will dip 0° at the magnetic equator and 90° at the magnetic poles. The magnetic compass is reliable until the dip angle exceeds 84° in polar areas.

2–4. Construction

The compass card, which is seen through the glass window of the compass case, has letters for cardinal headings (N, S, E, and W) and numbers (with last zero omitted) at each 30-degree interval.

Figure 2-1. The magnetic compass.
Figure 2-2. The Earth's magnetic field.
Mounted on the float with the compass card are two magnetized needles which aline themselves (and the compass card) with the magnetic field of the Earth. The float is mounted at its center on a pedestal rising from the bottom of the compass case or bowl. The bowl is filled with kerosene. This liquid provides lubrication, rust prevention, and a dampening action on the oscillations of the compass card. Behind the glass face of the compass bowl, a vertical lubber (reference) line is mounted. The heading of the aircraft is indicated by the compass card letter or number appearing behind the lubber line. The compass also contains a compass compensating assembly which is used to adjust (or swing) the compass.

2–5. Compass Errors

a. Variation. In some types of navigation, course computations on aeronautical charts are based upon a relation of the course to the true geographic North Pole. During flight, the magnetic compass points to the magnetic north pole, which is not at the same location as the true North Pole. This angular difference between true and magnetic north is known as magnetic variation. Lines of equal magnetic variation are called isogonic lines and are shown on aeronautical charts in degrees of variation east or west (fig 2–3). The line on a chart connecting points of 0° variation is called the agonic line. Lines of equal magnetic variation are replotted periodically to compensate for shifting of the poles or changes in local magnetic deposits.

b. Deviation. The magnetic compass is influenced by electrical equipment and metallic objects located near it. These influences cause the compass to deviate from its normal readings. The differences between the indications of a compass in a particular aircraft and the indications of an unaffected compass at the same point on the Earth's surface is called deviation. To reduce this deviation, the compensating assembly is adjusted. After the deviation is reduced as much as possible, a deviation card is prepared and mounted near the compass. The figures from this card are applied to the indications of the compass so that the aviator may fly a desired heading.

c. Magnetic Dip. The tendency of the magnetic compass to point down as well as north in certain latitudes is known as magnetic dip. Magnetic dip is responsible for the northerly and southerly

![Figure 2-3. Lines of equal magnetic variation in the United States.](image-url)
turning error and for the acceleration and deceleration error on headings of east and west. At the magnetic equator, the vertical component of the Earth’s magnetic field is zero and the magnetic compass is not disturbed by this factor. While flying from the magnetic equator to higher latitudes, the effect of the vertical component of the Earth’s magnetic field becomes pronounced. (Only errors in the northern hemisphere are discussed below; the exact reverse of these errors occurs in the southern hemisphere.)

1. **Northerly turning error.** Vertical dip tendency is not noticed in straight-and-level unaccelerated flight. The compass card is mounted so that its center of gravity is below the pivot point and the card is well balanced in the fluid. When the aircraft is banked, however, the compass card also banks as a result of the centrifugal force acting upon it. While the compass card is in this banked attitude, the vertical component of the Earth’s magnetic field causes the northseeking ends of the compass to dip to the low side of the turn, giving an erroneous turn indication. This error is most apparent on headings of north and south. When making a turn from a heading of north, the compass briefly gives an indication of a turn in the opposite direction and lags behind; when making a turn from a heading of south, it gives an indication of a turn in the proper direction but at a more rapid rate than is actually being made.

2. **Acceleration error.** Acceleration error is due to the action of the vertical component of the Earth’s magnetic field. The pendulous-type mounting of the compass causes the compass card to tilt during changes in acceleration and pitch. This momentary card deflection from the horizontal results in an error which is most apparent on headings of east and west. When accelerating or establishing a descent on either of these headings, the error is an indication of a turn to the north; when decelerating or establishing a climb, the error is an indication of a turn to the south. If the aircraft is on a north or south heading, no acceleration error is apparent while climbing, descending, or changing speed.

3. **Oscillation error.** Rough air or poor control technique causes erratic swing of the compass card and results in compass oscillation error. The fluid in which the magnetic compass is immersed (para 2–4) is subject to swirl and this may create noticeable error. Also, the comparatively small size of the compass bowl restricts the use of efficient dampening vanes.

4. **Errors resulting from the Earth’s magnetic field.** The Earth’s magnetic lines of flux must be strong enough to cause a bar magnet (as in a compass) to align with them. The magnetic compass is mounted so that when an aircraft is in straight-and-level unaccelerated flight, the vertical component of the Earth’s magnetic field has no effect on the compass indications. In the extreme latitudes (near the North and South Poles), the horizontal component of the Earth’s magnetic field is very weak and the compass may spin erratically or indicate improper headings.

5. **Constructional compensation.** All magnetic compasses are constructed to compensate for disturbing magnetic influences within the aircraft. The compensating mechanism is satisfactory when used with a deviation card (b above), as long as the deviation on any particular heading is constant. In modern aircraft, however, the deviation is seldom constant, so the use of the deviation card is limited. In the slaved gyro compass system (para 2–22 through 2–24), the remote compass transmitter is usually located in a wingtip or vertical stabilizer away from aircraft electrical and other magnetic disturbances.

Section II. GYROSCOPIC PRINCIPLES

2–6. **Gyroscopes**

A gyroscope (fig 2–4) is a wheel or rotor that is mounted to spin rapidly around an axis. It is also free to rotate about one or both of the two axes that are perpendicular to each other and to the axis of spin. A spinning gyroscope offers resistance (inertia) to any force which tends to change the direction of the axis of spin. The rotor (fig 2–4) has great weight (high density) for its size and is rotated at high speeds; therefore, it offers a very high resistance (inertia) to any applied force.

2–7. **Mountings**

a. **Free.** A freely (universally) mounted gyroscope has three planes of freedom and is free to rotate in any direction about its center of gravity. The rotor is free to rotate in any plane in relation to the base. The rotor spins so rapidly that its spin axis tends to remain in a fixed direction in space. The freely mounted gyroscope uses the gyroscopic property of rigidity in space. The flight instruments that use this type of mounting are the heading indicator and the attitude indicator.
b. *Semirigid.* A semirigidly mounted gyroscope is mounted so that one of the planes of freedom is held fixed in relation to the base. It uses the gyroscopic properties of rigidity in space and precession (para 2–8). The turn-and-slip indicator, a flight instrument, has a gyroscope which is semirigidly mounted.

2–8. Properties of Gyroscopic Action

_a. Rigidity in Space.* When spinning, the rotor remains in its original plane of rotation regardless of how the base is moved.

_b. Precession.* This is the resultant action or deflection of a spinning rotor when a deflective force is applied to its rim. Precession is classified as real and apparent.

(1) _Real precession._ This is a positive deflection caused directly or indirectly by an applied force or forces. Because of imperfect construction (imperfect balance of the rotor, bearing friction, and friction in the mountings), any gyroscope has some real precession. Other causes of real precession are centrifugal force, gravity force, and acceleration and deceleration.

(2) _Apparent precession._ A freely mounted gyroscope maintains its axis fixed in relation to space and not in relation to the surface of the Earth. As the Earth rotates, carrying the gyro mount around with it, the gyro spin axis maintains its direction in space. With respect to the Earth, the spin axis does change direction. This change in direction is called apparent precession.

Section III. GYROSCOPIC INSTRUMENT POWER SOURCES

2–9. General

Aircraft use either vacuum or electrical power to keep the rotors of gyroscopic instruments rotating continuously. Vacuum operated gyroscopes are reliable to 30,000 feet altitude and at temperatures down to −35° Fahrenheit. At higher altitudes and lower temperatures, electrically operated gyroscopes are more reliable.
2-10. Vacuum Driven Gyroscope

An engine driven vacuum pump reduces the pressure within the case of a gyroscopic instrument and outside air is then allowed to enter the case through a filter and nozzle. The nozzle directs a stream of air onto the buckets recessed in the rim of the rotor and causes the rotor to turn. The speed of the rotor may vary from 10,000 to 18,000 rpm, depending upon the design of the instrument. Some multiengine aircraft have vacuum pumps on more than one engine so that, if either pump or engine fails; vacuum will not be interrupted. Most modern single engine aircraft do not have an alternate source of vacuum. However, if an engine fails and the propeller continues to windmill, use of proper gliding speed will provide adequate vacuum for instrument operation. A vacuum gage is located on the instrument panel to indicate the suction (vacuum) in inches of mercury (Hg). A suction from 3.75 inches Hg to 4.25 inches Hg will operate the vacuum-driven attitude indicator and the directional gyro. A suction from 1.8 inches Hg to 2.1 inches Hg will operate the vacuum-driven turn indicator. If the vacuum reading should fall as low as 1.8 inches Hg during flight, the aviator knows that the attitude indicator and heading indicator are unreliable, but the turn indicator is reliable.

2-11. Electrically Driven Gyroscopes

In electrically driven gyroscopes, the rotor and stator of an electric motor are enclosed in a gyro housing and become, in effect, the gyro. The gyro or rotor is operated on current supplied from the aircraft's electrical system. An advantage of this system is that the case of the instrument can be hermetically sealed. This eliminates the danger of moisture condensation and keeps out foreign material. When the gyro reaches operating speed, enough heat is generated to insure effective lubrication at altitudes where the outside air temperature is extremely low.

Section IV. GYRO HEADING INDICATOR

2-12. General

The gyro heading indicator (fig 2-5) is used by the aviator to fly a constant heading and to make turns to headings. It is stable and does not have the errors of the magnetic compass; however, it is not a direction seeking instrument. It must be set to the heading read from the magnetic compass. During flight, the reading under the lubber line of each instrument must be compared with the other; and, when they differ, the gyro heading indicator must be set to the indication of the magnetic compass.

2-13. Operation and Construction

The operation of the gyro heading indicator depends upon the gyroscopic property of rigidity in space. A circular compass card (cylindrical dial) is attached at right angles to the plane of the rotor which turns in the vertical plane. Since the rotor remains rigid in space, the points on the compass card hold in a constant direction—the case (attached to the aircraft) simply revolves around the card during turns. The normal limits of operation of the instrument are 55° of pitch and 55° of bank.

a. Adjustment. The heading indicator can be set by pushing in on the caging knob, rotating the compass card to the desired heading, and then completely pulling out the caging knob to release the card.

b. Spinning Card. When the operating limits of the heading indicator are reached or exceeded, precessional forces cause the compass card to spin rapidly. The spinning can be stopped by pushing in on the caging knob. When the instrument is once again operating within its limits, it should be adjusted as in a above.

c. Caging. During maneuvers which exceed the attitude limits of the instrument, it should be caged by pushing in the caging knob. Exceeding the limits of the instrument, even when caged, causes excessive wear and will shorten the life of the gyroscopic unit.

d. Precession Errors. Precession will cause the heading indicator card to lose its position in space and thereby fail to agree with the heading shown on the magnetic compass. This will require an adjustment as in a above. If an adjustment of more than 3° in a 15-minute period is required, the precession is considered excessive and this fact should be entered on the Aircraft Inspection and Maintenance Record (DA Form 2408-13).
Figure 2-6. The vacuum-driven gyro heading indicator.
Section V. ATTITUDE INDICATORS

2—14. General

The attitude indicator, with its miniature aircraft (representing the actual aircraft) and the horizon bar (representing the actual horizon outside the aircraft), is the only flight instrument that directly displays the flight attitude of the aircraft. It simultaneously displays both the pitch and bank attitudes of the aircraft. It has no lag in response to changes in the aircraft attitude and provides instantaneous indications of even the smallest change in attitude.

2—15. Power Sources

Attitude indicators are powered either by a vacuum (suction) or an electrical source. The vacuum-driven attitude indicator (fig 2—6), along with other vacuum-driven instruments in the aircraft, is attached to the vacuum system. This system has a gage, in view of the aviator, which indicates whether or not there is sufficient suction for reliable operation of the instruments. The electrically operated attitude indicator (fig 2—7, 2—8, and 2—9) has a warning flag which appears on the face of the instrument whenever the electrical source is interrupted.

2—16. Construction

Attitude indicators have a device to represent the natural horizon. This may be a horizon bar, a horizon line, or a sphere or disk with a line separating a light color which represents the sky from a dark color which represents the Earth. A banking pointer is positioned at the top of the instrument face to indicate the banking attitude of the aircraft. A device representing a miniature aircraft is mounted in front of the horizon bar, sphere or disk. On some attitude indicators this device can be adjusted up or down by a knob located on the instrument case. This is done in order to place the miniature aircraft in the desired position in relation to the horizon bar or horizon line. Other attitude indicators have a knob which is used to adjust the horizon line in order to place it in the desired position in relation to the miniature aircraft. The horizon bar, sphere or disk, and the banking pointer are held rigid in space by a gyroscope so that the horizon line or horizon bar remains parallel to the natural horizon and the banking pointer remains perpendicular to the natural horizon. This establishes a level reference plane inside the aircraft. The case of the instrument, which is attached to the aircraft, moves with the aircraft as it changes its attitude. In this way the attitude of the aircraft is displayed on the attitude indicator in both pitch and bank.

2—17. Errors in Operation

a. The rotor housing of the vacuum-operated attitude indicator will contact stops on the inside of the instrument case whenever the bank attitude of the aircraft is greater than 110° or the pitch attitude is greater than 70°. These stops prevent 360° rotation of the case around the rotor housing. The instrument “tumbles” when the rotor housing hits the stops. Tumbling is recognized by rapid displacement of the horizon bar and banking pointer. The instrument is then unusable for controlling the attitude of the aircraft. However, as soon as the aircraft becomes less than the above limits in pitch and bank, the erecting mechanism within the instrument will place the rotor housing back to its normal position. This may take several minutes depending on the operating efficiency of the instrument. A more rapid replacement of the rotor housing to its normal position may be accomplished by pulling out the caging knob located on the front of the instrument case. As soon as the horizon bar and banking pointer stop in the caged position, the caging knob should be released. To determine whether or not the caging mechanism has completely released, push the caging knob against the instrument case.

b. The electric attitude indicators have gyroscopes which are mounted so as to allow 360° movement of the instrument case in both pitch and bank. If the instrument has a caging knob, it may be used to quickly erect the gyroscope after power has been applied to it or to erect it when inflight errors have been induced in the instrument.

c. Caging of an attitude indicator should be done only when the aircraft is in level flight. If uncaged in an unlevel flight attitude, it will remain in an unlevel attitude until the erecting mechanism has placed it back in its usual operating position.

d. Attitude indicators may have small errors in operation due to precession. This may be caused by uncoordinated use of the aircraft controls in flight, by turning of the aircraft, by acceleration or deceleration of the aircraft in flight, and by poor mechanical condition of the instrument. Many of these errors will be so small and of such short duration that the aviator will not be aware of them. The errors will usually be detected by reference to the other flight instruments. If the instrument is in good operating condition, the erecting mechanism will complete its correction of the error in a reasonable time after the error-inducing condition is no longer present.
Figure 2-6. The vacuum-driven (suction) attitude indicator
Figure 2-7. The J-8 electric attitude indicator.
2–18. Operation of the Attitude Indicator

For operation of the attitude indicator in each aircraft, the aviator must consult the operator's manual.

Section VI. TURN-AND-SLIP INDICATOR

2–19. Turn-and-Slip Indicator

The turn-and-slip indicator (fig 2–10) is a combination of two instruments—a turn needle and a ball. The turn needle depends on gyroscopic precession for its indications and the ball is actuated by gravity and centrifugal forces. Although some vacuum-operated turn needles are still in use, the majority are electrically operated. In either case, the gyroscopic properties used are the same. The gyro has a horizontal spin axis with a restricted mounting and is only free to tilt. The tilting of the gyro is displayed to the pilot as a deflection of the turn needle.

2–20. The Turn Needle

The deflection of the turn needle away from its vertical or centered position indicates that the aircraft is turning in the direction of the deflection, and the amount of deflection from the centered position is proportional to the rate of turn in degrees per second. The rate of turn depends on whether the instrument is a 2-minute or 4-minute turn needle. A 360° turn with a single-needle width deflection will require 2 minutes with a 2-minute turn needle (fig 2–10) and 4 minutes with a 4-minute (fig 2–10) turn needle. The rate of turn with a single-needle width deflection is 3° per second with a 2-minute turn needle and 1 ½° per second with a 4-minute turn needle. A rate of turn of 3° per second on a 4-minute turn needle will require a two-needle-width deflection of the turn needle.

2–21. The Ball

The ball part of the turn-and-slip indicator consists of a sealed, curved glass tube containing kerosene and a black agate or steel ball bearing which is free to move inside the tube. The fluid provides a dampening action and insures smooth and easy movement of the ball. The tube is curved so that the ball seeks the lowest point at its center. A small projection of the left end of the tube contains a bubble of air which compensates for expansion of the fluid during changes in temperature. Two strands of safety wire are wound around the glass tube as reference markers to indicate the correct position of the ball in the tube. The forces acting on the ball are gravity and centrifugal force.
Figure 2-10. Turn-and-slip indicator.

- **2-Minute Turn Indicator**
- **4-Minute Turn Indicator**

a. In Straight Flight. During straight flight, the force of gravity causes the ball to rest in the lowest part of the tube between the reference markers.

b. In a Balanced Turn. In a balanced (or coordinated) turn, gravity and centrifugal forces are in balance and the ball remains between the reference markers.

c. In an Unbalanced Turn. When the forces acting on the ball become unbalanced or unequal, the ball moves away from its position between the reference markers. The following unbalanced conditions are:

(1) **A skid.** In a skid the rate of turn is too great for the angle of bank. The centrifugal force is greater than gravity and the ball moves out of its centered position and toward the outside of the turn. Correcting to a balanced flight requires an increase of the angle of bank, a decrease in the rate of turn, or an adjustment of both until the forces are in balance.

(2) **A slip.** In a slip the rate of turn is too slow for the angle of bank. Gravity is greater than centrifugal force and the ball moves from its centered position and toward the inside of the turn. Correcting to a balanced flight requires a decrease of the angle of bank, an increase in the rate of turn, or an adjustment of both until the forces are in balance.

d. As a Balance Indicator. The ball instrument aids in achieving correct coordination. Correct coordination in fixed wing aircraft is achieved by proper use of the ailerons and rudder in relation to each other. It is achieved in rotary wing aircraft by proper use of the antitorque pedals and the cyclic in relation to each other. The ball instrument also aids in correctly setting the aileron and rudder trim in fixed wing aircraft during flight.

Section VII. SLAVEDGYRO COMPASS SYSTEMS

2-22. General

The slaved gyro compass system (fig 2-11) is a gyro-stabilized magnetic compass. The slaved gyro compass system may be operated as a magnetically slaved gyro compass over areas of the Earth's surface, where the Earth's magnetic field
SECONDARY SLAVED GYRO COMPASS
HEADING INDICATOR (RMI) (ID-250/ARN)

PRIMARY SLAVED GYRO COMPASS
HEADING INDICATOR (RMI) (ID-998/ASN)

Figure 2-11. Components of a typical slaved gyro compass system.
of force is usable. Each system may also be operated as a free gyro heading indicator in areas where the Earth's magnetic field is unusable (b below).

a. Slaved Gyro Mode of Operation. In the slaved mode of operation, a direction-sensing device called a flux valve detects the angular position of the Earth's magnetic field with respect to the aircraft. This information is fed to a drive unit used to align the gyro. From the gyro a stabilized heading indication is presented to the aviator.

b. Free Gyro Mode of Operation. In the free mode of operation, the direction-sensing flux valve is disconnected from the system, and the gyro is used only as a heading reference indicator. The aviator must originally set the heading indicator to correspond to the aircraft heading. The aircraft heading can be obtained from a standby magnetic compass or by alinement with the runway, etc. Since the gyro is not slaved to the flux valve unit, the heading indicator is subject to drift. The aviator should periodically check the heading indications with those of his standby source of heading reference and reset if necessary.

2–23. Components

Essentially, each slaved gyro compass system consists of a compass transmitter, an amplifier, a directional gyro, a primary heading indicator, and, normally, a repeater heading indicator.

a. Compass Transmitter. The compass transmitter contains the flux valve unit, which is the direction-sensing device of the system. This unit detects the horizontal components (or lines of flux) of the Earth's magnetic field and is suspended by a universal joint. The unit is weighted so that it normally maintains a horizontal plane. The universal suspension allows the flux valve to hang like a plumb bob and swing in a pendulous manner. The flux valve unit cannot rotate and is fixed to turn with the aircraft. Any change in direction by the aircraft results in a corresponding change of the flux valve unit in relation to the Earth's magnetic field. This field of force induces an electrical voltage in the flux valve unit which is transmitted through the amplifier to the directional gyro control. Since the heading information is transmitted electrically to the gyro, the unit can be installed at a remote part of the aircraft (e.g., wingtip) where magnetic deviation is at a minimum. A mechanical compensator further reduces the deviation effect.

b. Amplifier. The amplifier is the coordinating and distributing center of the slaved gyro compass system. Its principal function is to increase the strength of the signals from the compass transmitter. Normally, the amplifier also serves as the power supply and junction box of the compass system.

c. Directional Gyro. The directional gyro maintains a constant directional reference by using the gyroscopic property of rigidity in space (para 2–8a). The case of the directional gyro control unit rotates in azimuth about the directionally stabilized gyro as the aircraft turns. As the aircraft rotates about the gyro, the turn information is relayed to the primary heading indicator and the repeater indicator. The directional gyro maintains its reference to magnetic north by signals received from the remote compass transmitter. These signals operate a torque motor in the directional gyro control. The torque motor precesses the gyro unit until it is aligned with the transmitter signal, thus slaving the gyro to the Earth's magnetic meridian. The gyro is free to operate within 85° from the level flight attitude, both in pitch and bank. When these limits are exceeded, the gyro strikes mechanical stops. This causes erroneous indications to appear on the heading indicators until the directional gyro is again slaved through the compass transmitter to the magnetic meridian. Induced errors may be as large as 5°; however, the gyro will erect fully in 5 minutes or less.

d. Heading Indicators. The heading indicators (fig 2–12 and 2–13) in gyro compass systems may be either primary or repeater.

(1) Primary. Some primary heading indicators have an annunciator window and a gyro synchronizing control knob. The annunciator window

![Figure 2-12. Heading indicator ID-667/ASN.](image)
shows the direction in which the synchronizing knob should be rotated. If the gyro controls are not found on the primary heading indicator, they will be found on the gyro control panel.

(2) Repeater. The repeater dial may look exactly like the primary dial, but it merely repeats the indications on the primary indicator. The repeater indicator does not have a synchronizing knob.

2-24. Operation of Slaved Gyro Compass Systems

For operation of the slaved gyro compass system in each aircraft, the aviator must consult the operator’s manual.

Section VIII. THE PITOT-STATIC SYSTEM

2-25. General

The pitot-static system (fig 2-14) is the source of power for the operation of the differential pressure instruments—the altimeter, vertical speed indicator, instantaneous vertical speed indicator (IVSI), and the airspeed indicator. The differential pressure used to power these instruments is created either by impact and static or by static and trapped air pressures. The pitot-static system supplies both impact and static pressures through connecting lines to the instruments. The indications on the calibrated scales of these instruments result from differences in air pressures that exist within each of the instruments. To interpret the indications of these instruments properly, it is essential for the aviator to understand the construction, operation, and use of the entire pitot-static system.

2-26. Impact Pressure

Impact pressure is required for the operation of the airspeed indicator. The open pitot tube is

Figure 2-13. Course indicator ID-883.

Figure 2-14. Flush type pitot-static system.
mounted on the aircraft, parallel to the longitudinal axis of the aircraft, where there is a minimum disturbance of air caused by aircraft motion. Two major parts make up the pitot tube—the impact pressure chamber with lines and the heating unit. The pitot tube receives the impact pressure of the air. This impact pressure increases with the speed of the aircraft. Since the diaphragm (fig 2-23) of the airspeed indicator is connected directly to the pitot line, it is expanded by this increase in impact pressure. The expansion or contraction of the diaphragm in turn controls the position of the airspeed needle by a series of levers and gears. During preflight inspection, the aviator must remove any cover that is over the impact opening of the pitot tube.

2–27. Static Pressure

To obtain the required difference in pressure for the operation of the differential pressure instruments, static air pressure from the atmosphere is supplied to the instruments through static vents (or static ports) (fig 2-14). To minimize sensing errors, the static vents are located in an area that has the least disturbed airflow. Some aircraft have these vents located on the pitot tube; however, the majority of subsonic aircraft have them located on both sides of the fuselage. These vents are connected to a common line by a Y fitting. By placing and connecting the vents in this manner, there is a minimum error in static pressure due to erratic changes in the attitude of the aircraft during flight. During preflight inspection, the aviator must check these vents to see that they are unobstructed. Also, check that nothing has damaged or changed the size of one or more of these vents. Distorting the holes or the surrounding skin area a few thousandths of an inch can cause pressure sensing errors.

a. Alternate Source of Static Pressure. An alternate source of static pressure is provided in some aircraft in the event the normal system becomes obstructed by ice or otherwise fails. The alternate static vent (or vents) is usually located at a point in the airframe that is not susceptible to icing conditions. When this alternate source is located within the cockpit or cabin, there is usually a difference between the static pressure it supplies and that supplied by the normal system. Also, the opening of storm windows, air vents, or the operation of the heating/ventilating system may introduce a further change in the pressure supplied by the alternate source. When the aviator switches to the alternate source, the indications of airspeed and altitude will usually change and the vertical speed indicator will momentarily indicate a climb or descent. The amount and direction of the instrument errors are normally available from charts in the pilot's handbook for the aircraft. The corrections indicated by these charts should be applied to the airspeed indicator and altimeter during flight.

b. Emergency Alternate Source of Static Pressure. If the normal static system is inoperative and the aircraft has no alternate source, static pressure may be obtained by breaking the glass on any one of the differential pressure instruments. It is difficult to break the glass without damaging the instrument. For this reason, it is advisable to break the glass on the vertical speed indicator since this is the least important of the differential pressure instruments. If the glass of the vertical speed indicator is broken and the instrument is still operating, its indications will be the reverse of normal indications. The altimeter and airspeed indicator will lag in their indications because the static pressure now comes from inside the cockpit and forces its way to the instruments through the calibrated leak in the vertical speed indicator.

Section IX. THE PRESSURE ALTIMETER

2–28. General

The atmosphere surrounding the Earth exerts downward pressure because of its weight. The air near the Earth is weighted down and compressed by the air above and thus has greater density than the air above. This difference in pressure at various levels is utilized by the altimeter. The pressure altimeter (fig 2-15) is essentially a pressure measuring device calibrated to convert atmospheric pressure to an altitude indication. The conversion is based on a fixed set of values known as the US Standard of Atmosphere. A portion of these values is tabulated in table 2-1. Although these atmospheric values exist only on paper, they were constructed by a formula which approximates the average pressure and temperature of 45° north latitude in the United States. Up to an altitude of about 15,000 feet, pressure decreases approximately 1 inch Hg per 1,000 feet. A pressure setting knob (fig 2-15) compensates for nonstandard conditions of surface pressure that exist from hour to hour (para 2–306).
2-29. Construction of Altimeter

The basic component of the pressure altimeter is a series of aneroid wafers (fig 2-16). The aneroid wafers are airtight cells from which nearly all of the air has been evacuated. This series of interconnected wafers contracts or expands with changes of atmospheric pressure. As the aircraft altitude increases, the static pressure surrounding the wafers decreases and allows the wafers to expand. When the aircraft altitude decreases, the static pressure surrounding the wafers increases, causing the wafers to contract. One end of the stack of wafers is attached to the instrument case and the other is linked by a lever to a shaft. A linkage and gear assembly is also connected to the shaft. Expansion or contraction of the wafers causes the shaft to rotate. This rotation through the gearing mechanism positions the hands on the altimeter dial to indicate the altitude.

2-30. Reading the Altimeter

The altimeter dial (fig 2-15) is properly read by noting the position of all three hands in order, from the shortest to the longest. The shortest hand indicates tens of thousands; the intermediate hand thousands; and the longest hand hundreds. Figure 2-15 illustrates 750 feet.

a. The old type altimeter dial (fig 2-15) has been modified because of difficulty in rapidly determining thousands and tens of thousands of feet. The MB-2 (fig 2-17) was developed both as a new altimeter and as a conversion of older models. It has a crosshatched “flag” on the lower part of the dial and, instead of a 10,000-foot needle, it has a disk with a pointer extending out to the edge of the dial. A hole in the disk is located so that the edge of the flag barely shows at about 15,000 feet; at altitudes below 10,000 feet, the whole flag shows.

b. A barometric scale is visible through an opening (Kollsman window) in the right-hand side of the altimeter dial. This scale is calibrated from 28.10 to 31.00 inches Hg, and is rotated by the pressure setting knob. In the type of altimeter illustrated in figure 2-15, the rotation of the pressure setting knob also moves the reference marks.

Table 2-1. Standard Pressure and Temperatures at 1,000-Foot Intervals

<table>
<thead>
<tr>
<th>Feet</th>
<th>Pressure (inches Hg)</th>
<th>Degrees temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16,000</td>
<td>16.21</td>
<td>-17</td>
</tr>
<tr>
<td>15,000</td>
<td>16.88</td>
<td>-15</td>
</tr>
<tr>
<td>14,000</td>
<td>17.57</td>
<td>-13</td>
</tr>
<tr>
<td>13,000</td>
<td>18.29</td>
<td>-11</td>
</tr>
<tr>
<td>12,000</td>
<td>19.03</td>
<td>-9</td>
</tr>
<tr>
<td>11,000</td>
<td>19.79</td>
<td>-7</td>
</tr>
<tr>
<td>10,000</td>
<td>20.58</td>
<td>-5</td>
</tr>
<tr>
<td>9,000</td>
<td>21.38</td>
<td>-3</td>
</tr>
<tr>
<td>8,000</td>
<td>22.22</td>
<td>-1</td>
</tr>
<tr>
<td>7,000</td>
<td>23.09</td>
<td>1</td>
</tr>
<tr>
<td>6,000</td>
<td>23.98</td>
<td>3</td>
</tr>
<tr>
<td>5,000</td>
<td>24.86</td>
<td>5</td>
</tr>
<tr>
<td>4,000</td>
<td>25.84</td>
<td>7</td>
</tr>
<tr>
<td>3,000</td>
<td>26.81</td>
<td>9</td>
</tr>
<tr>
<td>2,000</td>
<td>27.82</td>
<td>11</td>
</tr>
<tr>
<td>1,000</td>
<td>28.86</td>
<td>13</td>
</tr>
<tr>
<td>Sea Level</td>
<td>29.92</td>
<td>15</td>
</tr>
</tbody>
</table>
Figure 2-17. The MB-2 altimeter dial.

These reference marks provide an alternate means (in hundreds of feet and thousands of feet) of adjusting the altimeter in the event that sea level pressure is outside the range of the barometric scale. Rotating the setting knob provides altimeter adjustment to nonstandard conditions of pressure (other than those in table 2-1). For example, assume that an altimeter is placed on the beach and is set at 29.92 inches Hg. If the hands indicate an altitude of 200 feet, the barometric pressure at that point on the beach is lower than standard. A barometric pressure of 29.72 inches Hg will cause a 200-foot-high indication if 29.92 inches Hg is set into the Kollsman window; if 29.72 inches Hg is rotated into the Kollsman window, the hands of the altimeter will return to zero. (One inch Hg equals 1,000 feet; 0.20 inch Hg equals 200 feet.) In effect, the hands have been assigned a different pressure for their zero indication. Rotating the setting knob on the altimeter merely displaces the hands a given amount with respect to the aneroid wafers.

c. Another type of pressure altimeter is the counter-drum-pointer altimeter. One model of this altimeter is the AIMS altimeter, the AAU-32/A (fig 2-18). In the term AIMS, the A stands for ATCRBS (Air Traffic Control Radar Beacon System), the I stands for IFF (Identification Friend or Foe), the M represents the MARK XII identification system, and S is for System. This altimeter is used in aircraft whose systems have a negligible installation error. It is a self-contained unit which consists of a precision aneroid altimeter combined with an encoder. The altitude is displayed to the aviator by the counter-drum-pointer dial and the encoder generates a signal which transmits the altitude to the air traffic control equipment through the aircraft transponder. Two techniques may be used by the aviator to read the altimeter:

1. Read the counter-drum window, without referring to the 100-foot pointer, as a direct digital readout of both thousands and hundreds of feet; or
2. Read the two counter indications, without referring to the drum, and then add the 100-foot pointer indication. The 100-foot pointer serves as a precise readout of values less than 100 feet required for determining lead points for level-off altitudes, maintaining level flight, and during instrument approaches. If the “CODE OFF” flag, located on the upper left of the altimeter face is visible, it means that the AC power is not available, the circuit breakers are not in, or there is an internal altimeter encoder failure. This indicates that the encoder is not operating and that no altitude information is being furnished through the transponder to the air traffic control equipment. However, this does not affect the ability of the instrument to indicate the correct altitude to the aviator.

2-31. Effect of Nonstandard Temperatures and Pressures

Atmospheric temperature and pressure vary continuously. Rarely is the pressure at sea level exactly 29.92 inches Hg or the temperature +15° C. Furthermore, the temperature and the pressure may not decrease with altitude increasing at a standard rate. Even if the altimeter is

INDICATED-ALTITUDE IS 405 FEET

Figure 2-18. Counter-drum-pointer altimeter.
properly set for surface conditions, it will often be incorrect at higher levels. On a warm day, the air expands and weighs less per unit volume than on a colder day, and the pressure levels are raised. On a cold day, the reverse would be true.

a. Altimeter Error Due to Nonstandard Temperature. If the air is warmer than the standard temperature for the flight altitude, the aircraft will be higher above sea level than the altimeter indicates; if the air is colder than the standard temperature for the flight altitude, the aircraft will be lower than the altimeter indicates (fig 2-19). The altimeter provides no way for the aviator to adjust it for nonstandard temperatures. However, since instrument flight in controlled airspace is accomplished at assigned indicated altitudes, aircraft separation is maintained because all aircraft using the same altimeter setting and flying in the same general area are equally affected by any nonstandard temperature. In selecting altitudes for flight over mountainous terrain where no minimum obstruction clearance information is available, the aviator must take into consideration nonstandard temperatures aloft (para 2-326(2)).

b. Altimeter Error Due to Nonstandard Atmospheric Pressure. Figure 2-20 shows the error in altimeter reading that would result if the aviator failed to adjust the altimeter for variations from standard atmospheric pressure. The figure shows a pattern of isobars in a cross section of the atmosphere from Pensacola, Florida, to New Orleans, Louisiana. The pressure at Pensacola is 30.00 inches Hg and the pressure at New Orleans is 29.60 inches Hg—a difference of 0.40 inch Hg. Assuming that the aircraft takes off from Pensacola to fly to New Orleans at an altitude of 700 feet, a decrease in mean sea level (MSL) pressure of 0.40 inch Hg from Pensacola to New Orleans could cause the aircraft to gradually lose altitude and, although the altimeter would continue to indicate 700 feet, the aircraft could actually be flying at approximately 300 feet over New Orleans.

2-32. Setting the Altimeter

a. Current Altimeter Setting. The current altimeter setting is normally given to the aviator during radio communications with FAA flight service stations, airport control towers, and other air traffic control personnel. However, the altimeter setting may be requested at any time. The first altimeter setting is received prior to flight. This gives the aviator an opportunity to check the accuracy of the altimeter while still on the ground. The altimeter accuracy check will be made as follows:

1. For rotary wing aircraft, it is best to make the check prior to starting the engine(s). This is done to eliminate the effect of any pressure changes caused by the rotor blades being in motion. For fixed wing aircraft, the check may be made either before or after starting engines.

Figure 2-19. Altimeter errors due to nonstandard temperatures.
(2) Set the current altimeter setting on the barometric scale. Then lightly tap the instrument panel near the altimeter so as to overcome any friction error within the instrument and to allow the altimeter needles to assume their corrected positions. (This is not necessary when using a counter-drum-pointer altimeter. It has an internal vibration.) Then compare the indicated altitude to a known elevation. Be sure that all needles, pointer, or drum are indicating properly. This elevation should be the one nearest the aircraft; e.g., airport elevation posted on an airport building, elevations printed in FLIP publications, or altimeter checkpoints on certain US Air Force bases. If the difference between the indicated altitude and the known elevation does not exceed 70 feet (0.07 inch Hg), the altimeter is considered reliable for flight. During flight the current altimeter settings should be placed on the barometric scale as they are received.

Note. If an instrument approach is to be made, check the altimeter setting provided by ATC with the forecast altimeter setting. If there is a large difference, ask for verification from ATC.

b. Altimeter Setting System. The altimeter setting provided by navigation radio stations, control towers, and other air traffic control agencies is a correction for nonstandard surface pressure only. Atmospheric pressure is measured at each station and the value obtained is corrected to sea level according to the station's surveyed elevation. Thus, the altimeter setting is a computed sea level pressure and should be considered valid only in close proximity to the station and near the surface. Nonstandard lapse rate errors may exist at all altitudes. However, at low altitudes the error is usually small.

(1) The obstruction clearance limits published for airways and instrument approaches will normally provide the necessary margin of safety for aircraft operating under instrument flight rules. Altitude separation between aircraft is maintained as long as the current altimeter setting is used. For example, in figure 2-21, aircraft A is assigned an altitude of 5,000 feet eastbound and, with the current altimeter setting applied, indicated altitude is 5,000 feet. However, due to nonstandard conditions aloft, actual altitude is only 4,700 feet. Aircraft B is assigned an altitude of 6,000 feet westbound and, with the current altimeter setting applied, the indicated altitude is 6,000 feet. The same nonstandard conditions affect aircraft B and the actual altitude is 5,700 feet. Even though both aircraft are 300 feet below indicated altitude, they will still retain a 1,000-foot vertical clearance as they approach and pass each other.

(2) At higher altitudes, pressure and temperature deviation from standard conditions could
Figure 2-21. Maintaining altitude separation by using current altimeter setting.
combine to cause altimeter errors that would place the aircraft below a safe terrain clearance altitude. A high altimeter setting combined with a pressure level aloft which is lower than standard is particularly dangerous in mountainous terrain. For this reason, the aviator should always consult the weather forecaster to analyze pressure patterns at high altitudes. For a complete discussion of this type altimeter error, see chapter 14 of FM 1-30.

2–33. Types of Altitude

The following types of altitude are most often used:

a. Indicated Altitude. Indicated altitude is altitude as read on the dial with a current altimeter setting (sea level pressure) set into the Kollsman window (para 2-31a).

b. Pressure Altitude. Pressure altitude (fig 2-22) is the height measured above the 29.92 inches Hg pressure level (standard datum plane). If the Kollsman window is set to 29.92 inches Hg, the hands of the dial indicate pressure altitude. (This setting is called the Standard Altimeter Setting.) In the United States, the use of pressure altitudes (Standard Altimeter Setting) begins at 18,000 feet; these altitudes are referred to as flight levels (FL). For example, 18,000 feet = FL 180; 35,000 feet = FL 350.

c. Absolute Altitude. Absolute altitude (fig 2-22) is the height or altitude above the surface or terrain over which the aircraft is flying.

d. True Altitude. True altitude (fig 2-22) is the altitude above mean sea level.

e. Density Altitude. Density altitude is the altitude for which a given air density exists in the standard atmosphere. If the barometric pressure is lower or the temperature is higher than standard, then density altitude of the field is higher than its actual elevation. For example, for Denver, Colorado, with an elevation of 5,500 feet, a temperature of 110° F., and barometer reading (corrected to MSL) of 29.55 inches Hg, density altitude is about 10,000 feet. Since higher density altitude requires a greater takeoff distance and reduces aircraft performance, failure to calculate density altitude in some situations could have fatal results. Density altitudes can be obtained from many airfield towers or may be computed on the dead reckoning computer.

Section X. THE AIRSPEED INDICATOR

2–34. Construction

The airspeed indicator has a cylindrical airtight case connected to the static line. Inside the case is a small diaphragm made of phosphor bronze or beryllium copper. The diaphragm, which is very sensitive to changes in pressure, is connected firmly at one side to the impact pressure line. The needle is connected through a series of levers and gears to the free side of the diaphragm (fig 2-23).

2–35. Operation

The airspeed indicator is a differential pressure instrument. It measures the difference between the pressure in the impact pressure line and the pressure in the static pressure line. The two pressures are equal when the aircraft is stationary on the ground; but movement through the air causes the pressure in the impact line to become greater than the pressure in the static line. The
2–36. Kinds of Airspeeds

There are three kinds of airspeeds—indicated, calibrated, and true.

a. Indicated Airspeed. Indicated airspeed is the airspeed read directly from the indicator.

b. Calibrated Airspeed. Calibrated airspeed is indicated airspeed corrected for instrument installation error. This error is caused by the difference in the static pressure at the pitot head and the static pressure at the static vents. The error is usually small and may be computed by reference to the appropriate aircraft operator's manual.

c. True Airspeed. True airspeed is calibrated airspeed corrected for error due to air density (altitude and temperature). This may be computed on the dead reckoning computer.

Section XI. THE VERTICAL SPEED INDICATOR

2–37. Construction

The vertical speed indicator (A, fig 2-24) has a sealed case connected to the static pressure line through a calibrated leak. Inside the case is a diaphragm similar to that in the airspeed indicator (para 2-34). This diaphragm is connected directly to the static pressure line. A system of levers and gears connects the diaphragm to the indicating needle on the face of the instrument (B, fig 2-24). The vertical speed indicator contains a mechanism which enables it to compensate automatically for changes in air temperature.

2–38. Operation

Although the vertical speed indicator operates entirely from static pressure, it is a differential pressure instrument. The differential pressure is established between the instantaneous static pressure in the diaphragm and the trapped static pressure within the case. When the aircraft starts a climb, the pressure in the diaphragm decreases in ratio to the reduction in atmospheric pressure. The calibrated leak retards the pressure change to the instrument case. This causes the diaphragm to contract, causing the needle to indicate an ascent. The leak in the case is calibrated so that it maintains a definite ratio between the pressure in the diaphragm and the pressure in the case as long as a constant rate of climb is maintained. When the aircraft levels off, the calibrated leak requires 6 to 9 seconds to equalize the two pressures and allow the needle to return to zero. This causes a lag of 6 to 9 seconds in the instrument. When the aircraft is descending, the pressure inside the diaphragm is increasing and the calibrated leak again maintains a constant relation between the two pressures.

2–39. Instrument Lag

The vertical speed indicator gives the rate at which the aircraft is climbing or descending (or indicates level flight). These indications are not reliable in extremely rough air or when the attitude of the aircraft is constantly changing. This is due, in part, to the lag in the instrument. The instrument can be used for indications of pitch attitude if a thorough understanding of its lag is considered in interpreting the indications.

2–40. Adjustment

The needle of the vertical speed indicator should indicate zero while the aircraft is on the ground or maintaining a constant altitude; any reading other than zero indicates a need for adjustment. This adjustment can be made by using a small screwdriver to turn the screw in the lower left corner of the instrument.
2-41. Instantaneous Vertical Speed Indicator (IVSI)

The instantaneous vertical speed indicator can be identified by the letters IVSI that appear on the dial. Compared to the conventional vertical speed indicator, this instrument has no apparent lag. The instantaneous vertical speed indicator is similar in construction to the conventional vertical speed indicator (para 2-37); it differs from this indicator by the addition of two accelerometers which generate pressure differences whenever there is a change in the normal acceleration of the aircraft. The pressure differences are transmitted to the sensitive diaphragm by pneumatic circuits. A velocity is added, as necessary, to the pressure-leak velocity to obtain the total nearly instantaneous vertical speed indication. The pressure-leak component approaches the actual speed, the integrated component fades out.

a. The sum of the pressure-leak and accelerometer velocities is the total vertical airspeed, provided the normal axis of the aircraft is within about 30° of the vertical.

b. Since the accelerometers are not vertically stabilized, some error is generated in turns. If a zero indication is maintained on the instantaneous vertical speed indicator when entering a turn, some loss in altitude will be encountered. A corresponding gain in altitude will result when recovering from a turn. The instantaneous vertical speed indicator should not be used for directly controlling vertical speed when rapidly banking in excess of 40°. However, the indicator is not affected once in a steady turn.

c. The fade-out of acceleration in a steady turn, when a turn has been started and the accompanying change in normal acceleration has been completed, occurs because the accelerometer masses will settle to new balance points corresponding to the normal acceleration maintained in the turn. In establishing a 30° bank, altitude deviation should not exceed 90 feet while maintaining the instantaneous vertical speed indicator at 0. In more steeply banked turns, the turn error rapidly increases with bank angle.
CHAPTER 3
SENSATIONS OF INSTRUMENT FLIGHT

Section I. DISORIENTATION AND THE ILLUSIONS OF FLIGHT

3–1. Sensory Illusions
A sensory illusion is a false interpretation of sensations transmitted from the eyes, the vestibular apparatus, and the postural senses. Sensory illusions have been a problem since man's first attempt to fly. The aviator must learn to ignore confusing sensory information and rely only on the objective evidence provided by the aircraft's instrumentation.

a. Spatial Disorientation. Spatial disorientation is an inability to orient oneself properly with respect to the Earth's surface; it is a part of certain sensory illusions.

b. Vertigo. Vertigo is the aviator's illusion of the sensation of rotation (dizziness occurring during flight). Many aviators erroneously refer to all sensory illusions, with or without the sensation of rotation, as vertigo.

3–2. Vision
a. General. Man, by experience, has learned the meaning of the horizon and instinctively corrects for changes in the horizontal. The presence of a stable horizon makes it possible for most individuals to remain oriented. However, severe stimulation to any one of the organs of equilibrium may produce significant disorientation effects.

b. Visual Illusions.
(1) Autokinetic illusion. Because the eyes are unable to remain fixed on a single light viewed against a dark background, the light appears to move. This illusion can be eliminated by visual scanning, by increasing the number of lights, or by varying the light intensities. This illusion has occurred quite frequently during night formation flights when a wingman continues to stare at the wingtip light of the lead aircraft.

(2) Relative motion. The motion of a wingman can be interpreted as motion of the flight leader. Such transposition is frequently seen in a railroad station where a nearby moving train is misinterpreted as being a stationary train.

(3) False horizons. In the absence of a terrestrial horizon, a slanting cloud bank may be misinterpreted as being horizontal.

3–3. The Vestibular Apparatus
a. General. The inner ear is imbedded in the temporal bone of each side of the head and contains both the organ of hearing and the vestibular apparatus of equilibrium. The vestibular apparatus is made up of three semicircular canals. When the head is upright, these canals lie at right angles to each other in three planes (horizontal, vertical, and transverse). Their general structure can be seen in figure 3–1. Hairlike filaments in the canals (A, fig 3–1) sense the motions of the fluid about them and signal the brain according to the motions sensed.

(1) Altered planes of reference. When approaching a line of mountains or clouds, there is a tendency to climb. The reverse is true when leaving such a line. In flying parallel to a line of clouds, there is a tendency to tilt away.

(5) Confusing lights. Ground lights can easily be misinterpreted as stars.

(6) Depth perception. Inadequate visual references, while flying at night or over water, result in diminished depth perception and dangerous illusions may occur.

(7) Flicker vertigo. Lights flickering at a rate of 4 to 20 cycles per second can produce unpleasant and dangerous reactions including nausea, vertigo, convulsions, and unconsciousness. Fatigue or frustration tend to strengthen these reactions. The majority of evidence indicates that these hazards are not a serious problem for Army aviators. However, the problem is a potential one of which every aviator should be aware. Research indicates that flicker vertigo can be caused by—

(a) The passage of sunlight through propeller blades.

(b) Passage of sunlight through rotor blades.

(c) Dual rotating beacons flickering against an overcast sky.
(2) Minimum accelerations (vestibular threshold) of motion are required before the vestibular apparatus will transmit any signals at all. The following minimum accelerations are averages:

(a) Linear: 4.5 inches per second per second.*

(b) Angular: 3.0 inches per second per second.

(c) Radial: 2° per second per second.

(3) Once the inertia of the fluid is overcome by acceleration and the nerve ends are neutralized (C, fig 3-1), the signal thus generated is likewise transmitted to the coordination centers of the brain.

(4) Under the conditions described above, in-flight errors of the vestibular apparatus are understandable. If acceleration stops and the semicircular canals reach a constant velocity or come to rest (D, fig 3-1), the fluid continues to move as before and temporarily at the accelerated rate. The nerve filaments signal the brain of movement in a direction opposite that just traveled. This is the most serious shortcoming of the vestibular apparatus and leads to several sensory illusions in flight.

b. Vestibular Illusions. Illusions caused by limitations of the vestibular apparatus are—

(1) Leaning. The aircraft may be tipped quickly by rough air and the aviator gets correct sensations of the attitude of the aircraft. Then, the aviator may recover the aircraft by an imperceptibly slow return to straight-and-level flight. The aviator retains the feeling he is “leaning” even though he is in a level attitude. Angular motion is not perceived at a rate below the threshold of vestibular stimulation (para 3-3a(2)(b)).

(2) Tilting. A sensation of opposite tilt in a skid may occur in an uncoordinated turn. With insufficient bank, the hair cells of the semicircular canals are bent away from the turn and a sensation of a tilt away from the direction of the turn is produced. The illusion occurs most frequently in turbulent air, particularly under instrument flight conditions. Since the aviator does not correct rolling and pitching of the aircraft constantly, a low wing, for example, may rise to normal attitude without the minimum vestibular acceleration required (2° per second per second) for nerve sensation. Although his instruments indicate a return to even keel, the aviator’s compulsion is very strong to tilt against the former tilt of the wing.

(3) Pitching. Sensations of climbing while in a turn, diving when leveling off from a climb, or climbing after leveling off from a dive are related primarily to postural sensations and changes in apparent weight. However, vestibular stimulation similar to that producing leans complicates the sensation of pitching.

(4) Spinning. If the rate of rotation is held reasonably constant for 20 seconds or more, fluid flow within the semicircular canals ceases and the hair cells tend to return to a normal position. When the rotation or spin stops, the fluid within the semicircular canals again produces a relative flow by inertia and a sensation of turning or spinning in a direction opposite to the original occurs. Thus, the aviator pulling his aircraft out of a spin experiences a sensation of spinning in the opposite direction. If he commits the error of correcting for this false sensation, he goes back into the original spin.

(5) Sensations from centrifugal force. When an aviator moves his head up or down while in a turn or a spin, a second set of canals is stimulated and a violent sensation of tumbling occurs that may be accompanied by true vertigo and even nausea on occasion.

(6) Oculo-gyral illusion. If visual cues are reduced, vestibular stimulation may cause strong visual illusions of apparent motion that persist after the actual rotation has stopped. This illusion occurs when objects in the field of vision appear to move when the semicircular canals are stimulated. Such illusions can occur during the recovery from a spin or a descending spiral. It can also occur when the aviator moves his head abruptly during a prolonged turn.

* The term “per second per second” means that the rate of acceleration changes so much per second every second; e.g., 2, 4, 6, 8, 10, etc., with each succeeding second.
(7) **Oculo-gravic illusion.** During accelerative maneuvers, stimulation of the semicircular canals may interact with eye movements to cause an apparent change in the position of objects within the visual field. This illusion can occur when a high performance aircraft accelerates forward while in flight and gives the aviator the sensation that he is in a nose-up attitude. This illusion can also occur during the takeoff roll.

3–4. The Postural Senses

a. General. With training and experience, the aviator can distinguish the more distinct movements of the aircraft by the pressures of the aircraft seat upon his body while seated in flight. This is known as the “seat-of-the-pants” sensation. This includes sensations resulting from pressures on joints, muscles, skin, and also those from slight changes in position of internal organs. This sensation is intimately associated with the vestibular apparatus and to a lesser degree with the visual sense. The aviator mobilizes and uses all of these resources when he adapts himself and gets the “feel of the aircraft.”

b. Postural Illusions.

(1) **Pitch.** A properly executed turn vectors gravity and centrifugal force through the vertical axis of the aircraft. In the absence of visual references, the only sensation is body awareness of being pressed more firmly into the seat. This sensation is normally associated with climbing and may be thus falsely interpreted by the aviator. Recovery from turning lightens pressure on the seat and this creates an illusion of descending.

(2) **Skid.** In a turn, skidding presses the body away from the direction of the turn. In instrument flying this is interpreted by the senses as a tilt in the opposite direction. Likewise, slipping the aircraft in too steep a bank presses the body in the direction of the turn and may also create false illusions.

3–5. Limitations of Vestibular Apparatus and Postural Senses

When the eyes have enough information to go by, they provide reliable orientation information. However, in instrument flight it is necessary to depend entirely on instruments since the vestibular apparatus and postural senses often give misleading information. These senses act primarily on the basis of gravity and provide reliable orientation information while on the ground. When in flight, the aviator experiences acceleration and centrifugal forces that affect these senses exactly as gravity does, thus providing misleading information. For example, a banked turn may seem to be a straight-and-level flight since positive acceleration affects the vestibular apparatus and postural senses in the same manner as gravity.

Section II. OVERCOMING SENSORY ILLUSIONS

3–6. Intuition vs Cross-Checking

Cross-checking enables the aviator to repeatedly prove that his intuition is wrong. Thus he develops the habit of checking the instruments before changing the attitude of the aircraft. While cross-checking the instruments, the aviator learns and perfects a technique of combating the ill effects of the sensory illusions. This technique should be fully established concurrently with other good habits in the development and maintenance of high instrument proficiency. As experience is gained in relying on instruments, distracting impressions of the mind become easier to overcome.
CHAPTER 4
POWER, PITCH ATTITUDE, AND BANK CONTROL THROUGH INSTRUMENTS FOR FIXED AND ROTARY WING AIRCRAFT

Section I. GENERAL

4—1. Introduction
In instrument flying, attitude requirements are determined by interpretation of the instrument indications within the aircraft. The attitude of an aircraft is controlled by movement around its lateral, longitudinal, and vertical axes (fig 4-1 and 4-2).

4—2. Cross-Checking
Observing and interpreting two or more instruments to determine the attitude and performance of an aircraft is called cross-checking.

a. Although no specific method of cross-checking is recommended, those instruments which give the best information for controlling the aircraft in any given maneuver should be used. The important instruments are the ones that give the most pertinent information for any particular phase of the maneuver, and are usually the instruments that should be held at a constant indication. The remaining instruments should be used to aid in maintaining the important instruments at the desired indications. This is also true in using the emergency panel.

b. Cross-checking is mandatory in instrument flying. In visual flight, a level attitude can be maintained by outside references. However, even then the altimeter must be checked to determine if altitude is being maintained.

4—3. Trim
a. General. Proper trim technique is essential to smooth and accurate instrument flying. The aircraft should be properly trimmed while executing a maneuver. The degree of flying skill which an aviator will ultimately develop depends largely upon how well he learns to keep the aircraft trimmed.

b. Fixed Wing. A fixed wing aircraft is correctly trimmed when it is maintaining a desired attitude with all control pressures neutralized. By relieving all control pressures, the aviator will find it much easier to maintain the aircraft in a certain attitude. This will allow him more time to devote to the navigation instruments and to additional cockpit duties. An aircraft is placed in trim by applying control pressure(s) to establish a desired...
attitude and then adjusting the trim so that the aircraft will maintain that attitude when the flight controls are released. Trim the aircraft for coordinated flight by centering the ball of the turn-and-slip indicator. Move the rudder trim in the direction the ball is displaced from center. Aileron trim may then be adjusted to maintain a wings-level attitude. Differential power control on multiengine aircraft is an additional factor affecting coordinated flight. When possible, use balanced power/thrust to aid in maintaining coordinated flight. Changes in attitude, power, or configuration may require trim adjustments. Use of trim alone to establish a change in aircraft attitude usually results in erratic aircraft control. Smooth and precise attitude changes are best attained by a combination of control pressures and subsequent trim adjustments. The trim controls are aids to smooth aircraft control.

c. Rotary Wing. Maintaining trim in rotary wing aircraft is accomplished by a continuing cross-check of the instruments and the use of any trim devices on the aircraft. See paragraphs 4-16b and 4-23d for trim procedures.

Section II. POWER CONTROL

4—4. Power
Power produces thrust and gives motion to the wings/rotor(s), thus creating lift. Sufficient power, combined with the appropriate attitude of the wing, overcomes the forces of gravity, drag, and inertia, and results in the desired performance of the aircraft.

4—5. Power Instruments
Army aircraft (both fixed and rotary wing) are powered by a variety of power plants. Each power plant has certain instruments, available to the aviator, that indicate the amount of power that is being applied in the operation of the aircraft. During instrument flight, these instruments must be used by the aviator in making the required power adjustments.

4—6. Constant Airspeed
If airspeed is maintained constant by pitch attitude adjustments, there will be a resulting pitch attitude of the aircraft where a certain power setting will result in level flight (A, fig 4-3). Then, if power is increased, there will be a requirement for a pitch attitude adjustment upward to maintain a constant airspeed and a climb will result (B, fig 4-3). If the power setting is decreased, the pitch attitude must be decreased in order to maintain a constant airspeed and a descent will result (C, fig 4-3).

4—7. Constant Altitude
A constant altitude is maintained by minor pitch attitude adjustments and the desired airspeed is maintained by power adjustments as necessary. After the altitude is stabilized and the desired airspeed is established, any deviation from altitude will result in a change in the airspeed as long as the altitude is changing. When the altitude is once again stabilized, the airspeed will return to its previous indication provided the power is maintained at the previous setting. If airspeed is high due to loss of altitude, the excess airspeed may be utilized by an upward pitch adjustment in returning the aircraft to the desired altitude and airspeed. Conversely, a gain in altitude and accompanying loss of airspeed, the excess altitude may be utilized by a downward pitch attitude adjustment in returning the aircraft to the desired altitude and airspeed. When the airspeed is as desired but the altitude is not as desired, pitch adjustments may be used to make small corrections in altitude while allowing the airspeed to change temporarily. In figure 4—4, the aircraft at A—1 will be returned to 4,000 feet altitude and 140 knots airspeed by the action taken in B. Aircraft A—2 will be returned to 4,000 feet altitude and 140 knots airspeed by the action taken in C. In both examples, note that there was a temporary airspeed change until the aircraft was once again back to the desired altitude. Whenever a combination of high altitude and airspeed or low altitude and airspeed exist, a power adjustment is required to more easily make the altitude adjustment and to keep the airspeed near that desired.

4—8. Changes in Attitude Due to Power Variation
When power is changed to adjust airspeed, it may cause changes in the attitude of the aircraft around some or all axes of movement. The amount and direction of movement will depend on how much or how rapidly the power is changed, whether the aircraft is single-engined or multi-engined, and whether the aircraft is fixed wing or rotary wing. As the airspeed is changing, the pitch attitude must be adjusted as necessary to maintain the desired attitude for the maneuver being executed; the bank must be adjusted as
Figure 4-3. Effects of power changes while maintaining constant airspeed.
Figure 4-4. Airspeed converted to altitude and vice versa.
Figure 4-6. Maintaining a constant altitude/power variable.

necessary to maintain the desired heading or to maintain a desired rate of turn; the rudder must be used as necessary to maintain coordinated flight; and trim must be adjusted as control pressures indicate a change is needed. The effect on pitch attitude and airspeed caused by power changes during level flight is illustrated in figure 4-5.

4—9. Power Control

When large airspeed changes are desired, such as reducing from cruise flight to traffic pattern airspeed, the change can be attained in a shorter period of time if the power is reduced to a setting lower than that which has been recommended to maintain the pattern airspeed. Conversely, for making a change from a lower to a higher speed, the power may be advanced to a setting which is higher than that recommended for the higher speed. In both cases, as the airspeed approaches that which is desired, the power must be adjusted to the recommended setting to maintain it.

4—10. Cross-Check of Power Instruments

During or immediately after adjusting the power control(s), the power instruments should be cross-checked to see if the power adjustment is as desired. Whether the need for a power adjustment is indicated by another instrument or instruments, or if desired by the aviator, it is made by reference to the power instruments.

Section III. PITCH ATTITUDE CONTROL

4—11. General

The pitch attitude control of an aircraft is the angular relationship between the longitudinal axis of the aircraft and the actual horizon (fig 4-6). The pitch attitude control instruments are the altimeter, attitude indicator, vertical speed indicator, and airspeed indicator (fig 4-7). The attitude indicator displays a direct indication of the pitch attitude of the aircraft. The other pitch attitude control instruments indicate indirectly the pitch attitude of the aircraft.

4—12. The Attitude Indicator

The attitude indicator gives a direct and immediate indication of the pitch attitude of the aircraft. The aircraft controls are used to position the miniature aircraft in relation to the horizon bar or horizon line for any pitch attitude required (fig 4-8).

a. The miniature aircraft should be placed in the proper position in relation to the horizon bar or horizon line prior to takeoff. The aviator will refer to the aircraft operator's manual to determine this position. As soon as practicable in level flight and at desired cruise airspeed, the miniature aircraft should be moved to a position that alines the wings of the miniature aircraft in front of the horizon bar or horizon line. This adjustment may be made anytime that varying loads or other conditions indicate that it is needed. Otherwise, the position of the miniature aircraft should not be changed for flight at other than cruise speed. This is to insure that the attitude indicator will display a true picture of pitch attitude in all maneuvers.

b. When using the attitude indicator in applying pitch attitude corrections, control pressure should be extremely light. Movement of the horizon bar above or below the miniature aircraft of the attitude indicator in fixed wing aircraft should not exceed one-half the bar width (A, fig 4-9); in rotary wing aircraft, movement should not exceed one bar width (B, fig 4-9). If further change is required, an additional correction of not more
than one-half the width of the horizon bar will normally counteract any deviation from normal flight.

4–13. The Altimeter

If the aircraft is maintaining level flight, the altimeter needles will maintain a constant indication of altitude. If the altimeter indicates a loss of altitude, the pitch attitude must be adjusted upward to stop the descent. If the altimeter indicates a gain in altitude, the pitch attitude must be adjusted downward to stop the climb (fig 4-10). The altimeter can also indicate the pitch attitude in a climb or descent by how rapidly the needles move. A minor adjustment in pitch attitude may be made to control the rate at which altitude is gained or lost.

4–14. The Vertical Speed Indicator

a. In flight at a constant altitude, the vertical speed indicator (sometimes referred to as vertical velocity indicator or rate-of-climb indicator) will remain at a zero position. If the needle moves below the zero position, the pitch attitude must be adjusted upward to stop the descent and return to level flight. If the needle moves above the zero position, the pitch attitude must be adjusted downward to stop the climb and return to level flight. Prompt adjustments to the changes in the indications of the vertical speed indicator may prevent any significant change in altitude (fig 4-11). Turbulent air will cause fluctuations of the needle about the zero position. In such conditions, the average of the fluctuations should be considered as the correct reading. Reference to the altimeter will be of help in turbulent air since it is
not as sensitive as the vertical speed indicator. The amount of vertical speed indicated or the rate at which the needle moves away from the zero position indicates the amount of pitch attitude adjustment that will be required to return the needle to zero and stop any altitude change. For example, a large deviation of the needle from zero or a rapid movement away from the zero position indicates that a large pitch attitude adjustment will be required to return the needle to zero position. When using the vertical speed indicator to make corrections back to the desired altitude, the correction must not be too large and cause the aircraft to overshoot the desired altitude, nor should it be so small that the return to altitude is unnecessarily prolonged. As a guide, the pitch attitude change should produce a rate of change on the vertical speed indicator of approximately twice the size of the altitude deviation. For example, if the aircraft is 100 feet off the desired altitude, a 200 feet-per-minute rate of correction would be used.
A. NOSE LOW (DESCENDING)

B. NOSE HIGH (CLIMBING)

Figure 4-10. Altimeter indications of pitch attitude.

b. During climbs or descents, the vertical speed indicator is used to change the altitude at a desired rate. Pitch attitude and power adjustments are made as necessary to maintain the desired rate of climb or descent on the vertical speed indicator.

c. When pressure is applied to the controls and the vertical speed indicator shows a rate exceeding 200 fpm from that desired, overcontrolling is indicated. For example, if attempting to regain lost altitude at the rate of 500 fpm, a reading of more than 700 fpm will indicate overcontrolling. The initial movement of the needle indicates the trend of the vertical movement of the aircraft. The period of time necessary for the vertical speed indicator to reach its maximum point of deflection after a correction has been made is referred to as lag. The lag is proportional to the speed and magnitude of the pitch change. In fixed wing aircraft, overcontrolling may be reduced by relaxing pressure on the controls, which allows the pitch attitude to neutralize itself. In some rotary wing aircraft with servo-assisted controls, no control pressures are apparent. Under this condition, overcontrolling can be reduced by reference to the attitude indicator.

d. Some aircraft are equipped with an instantaneous vertical speed indicator (IVSI). (The letters IVSI appear on the face of the indicator.) This instrument assists in interpretation by instantaneously indicating the rate of climb or descent.

e. Occasionally, the vertical speed indicator is slightly out of calibration and will indicate a slight climb or descent when the aircraft is in level flight. If readjustment cannot be accomplished, the error in the indicator should be considered when the instrument is used for pitch control. For example, an improperly set vertical speed indicator may indicate a descent of 100 fpm when the aircraft is in level flight. Any deviation from this reading would indicate a change in pitch attitude.

4—15. The Airspeed Indicator

The airspeed indicator gives an indirect reading of the pitch attitude. With a constant power setting and a constant altitude, the aircraft is in level flight and the airspeed remains constant. If the airspeed increases, the pitch attitude has lowered and should be raised; if the airspeed decreases, the pitch attitude has moved higher and should now be lowered (fig 4-12). A rapid change in airspeed indicates a large change in pitch; a slow change in airspeed indicates a small change in pitch. Although the airspeed indicator is used as a pitch instrument, it may be used in level flight for power control. Changes in pitch are reflected immediately by a change in airspeed. There is very little lag in the airspeed indicator.

4—16. Pitch Attitude Trim

Incorrect setting of pitch attitude trim (fig 4-13) may result in a nose-high or a nose-low pitch attitude unless corrective pressures are maintained.
Proper pitch attitude trim for fixed wing aircraft may be made as follows:

1. Establish desired attitude with control pressure.
2. Relieve control pressure by application of trim while maintaining attitude.
3. Repeat above procedures as necessary until the aircraft maintains an attitude without constant pressure on the control.

b. Some rotary wing aircraft have provisions for pitch attitude trim and relief of control pressures. Pitch trim adjustments on these aircraft should be made as follows:

1. Press force trim button or control centering release button.
2. Establish desired pitch attitude.
3. Release force trim button or control centering release button.
4. Repeat (1) through (3) above, as necessary.

4—17. Cross-Check of Pitch Attitude Instruments

a. The altimeter is an important instrument for indicating pitch attitude in level flight except when used in conditions of exceptionally strong vertical currents such as thunderstorms. With proper power settings, any of the pitch attitude instruments can be used to hold reasonably level flight attitude; however, only the altimeter will give the exact altitude information.

b. Regardless of which pitch attitude control instrument indicates a need for a pitch attitude adjustment, the attitude indicator, if available, should be used to make the adjustment.

4—18. Common Errors in Pitch Attitude Control

Some common errors in pitch attitude control are—

a. Overcontrolling.

b. Improper use of power.

c. Failure to cross-check the pitch attitude instruments adequately and to take proper corrective action when need for a change in pitch attitude is indicated.

Section IV. BANK-ATTITUDE CONTROL

4—19. Bank-Attitude Control to Produce Balanced Straight Flight

The banking attitude (fig 4-14) of an aircraft is the angular relationship of the lateral axis of the aircraft to the actual horizon. To maintain a straight course in visual flight, the wings (rotor(s)) of the aircraft must be kept level with the actual horizon. In balanced flight, any deviation from a wings-level attitude produces a turn. During actual or simulated instrument conditions, the miniature aircraft and horizon bar of the attitude indicator are substituted for the real aircraft and the actual horizon, and the banking attitude is accurately indicated. Instruments which indicate banking attitude are the attitude indicator, the heading indicator, and the turn-and-slip indicator (fig 4-14).
4—21. The Heading Indicator

The heading indicator gives an immediate indication of turning (fig 4-16). In balanced or coordinated flight, the indication of a turn means that the aircraft is banking in the direction of the turn, and that the bank must be corrected if the turn is to be stopped. The heading indicator also indicates indirectly the amount of bank the aircraft has assumed. If the heading is changing slowly, the amount of banking is small. If it is moving rapidly, the amount of banking is large. If a fixed wing aircraft continues to turn after the banking is corrected, the rudder trim should be checked for a possible resetting.

4—20. The Attitude Indicator

The banking attitude is shown directly on the attitude indicator (fig 4-15). Banking is shown by the miniature aircraft wings assuming an angle in relation to the horizon bar and by the bank index pointer moving from the zero position. The bank index pointer will indicate the angle of bank of the aircraft by assuming a position in relation to the angle of bank reference marks at the top of the instrument face. The aviator must determine the direction of banking by reference to the miniature aircraft. The bank index pointer moves in a direction opposite to the bank. In coordinated flight, maintaining the bank index pointer at the zero position will prevent banking.

4—22. The Turn-and-Slip Indicator

When the attitude indicator is not available, the heading indicator is used for bank attitude control in straight flight. However, for making turns, the turn needle must be used.

a. Turn Needle. The turn needle indicates both direction and rate of turn. In balanced or coordinated flight, the aircraft is not banking if the turn needle is centered. If the needle is displaced from
Figure 4-17. The turn-and-slip indicator as a bank-attitude instrument.

center, the aircraft is banking and turning in the direction of the displacement. Recentering the needle with smooth and coordinated control movements will remove any banking attitude and the aircraft will fly straight. Any deviation from the exact center position must be promptly recentered to prevent turning (fig 4-17). Accurate interpretation of the needle position requires close observation. In turbulent air the needle will oscillate from side to side and accurate interpolation of these fluctuations must be made to detect actual turning. If the deflection is equal on both sides of center, the aircraft is flying straight. If the distance of deflection is greater on one side than the other, the aircraft is turning in the direction of the greater deflection.

b. Turn-and-Slip Indicator Ball. Although the ball is combined with the turn indicator as one unit, it is a separate and independent instrument, with its own specific function. The two parts of the turn-and-slip indicator are, however, normally read and interpreted together. If the ball is off-center, the aircraft is yawing (slipping or skidding). If the aircraft is slipping, the ball is off-center toward the inside of the turn (low wing) (A, fig 4-18); if skidding, the ball is off-center toward the outside of the turn (high wing) (B, fig 4-18). The ball of the indicator shows the quality of control coordination (C, fig 4-18), whether in turning or straight flight. In fixed wing aircraft, the displacement of the ball to one side of center in wings-level flight indicates the need for an adjustment in rudder trim and possibly aileron trim. In a rotary wing aircraft, the displacement of the ball to one side of center indicates the need for a pedal adjustment. To keep the aircraft from turning, a cyclic movement must be made in the opposite direction.

4-23. Bank-Attitude Trim

a. In fixed wing aircraft, an incorrect setting of either aileron or rudder trim, or both will cause the aircraft to bank and turn. Resetting of the aileron and rudder trim tabs (fig 4-19) will correct the banking tendency.

b. In a fixed wing aircraft, an incorrect setting of the rudder trim results in a tendency to skid gradually out of a straight flightpath. A skid usually causes the aircraft to bank because it increases the velocity and, therefore, the lift of one wing. Accurate trim adjustment facilitates precise bank control.
c. Rudder and aileron trim adjustments in fixed wing aircraft should be made as follows:

(1) Establish balanced flight in the desired attitude with control pressures.
(2) Relieve rudder pressure with rudder trim.
(3) Relieve aileron pressure with aileron trim.
(4) Repeat process until the aircraft will maintain desired attitude.

d. Rotary wing aircraft equipped with trim mechanisms should be trimmed as follows:

(1) Press force trim push button or control centering release button.
(2) Establish level flight with cyclic control with reference to the attitude indicator.
(3) Center the ball of the turn-and-slip indicator with pedals.

(4) Release force trim push button or control centering release button.
(5) Repeat (1) through (4) above, as necessary.

4—24. Cross-Checking of Bank Instruments

All available bank-attitude instruments are used to maintain straight flight and to perform turns. Maintaining straight flight in a balanced condition can be accomplished by using the heading indicator and the attitude indicator. If neither of these instruments is available, the turn needle must be used. For bank control in turns, the attitude indicator is used; if it is not available, the turn needle must be used. In all cases, the turn-and-slip indicator should be included in the cross-check to detect possible malfunctioning of the other bank control instruments and to check for a balanced flight condition.

4—25. Common Errors in Bank Control

Common errors in bank-attitude control are—

a. Failure to cross-check the heading indicator to maintain straight flight.

b. Failure to make corrective action promptly to return to the desired heading.

c. Failure to use attitude indicator properly.

d. Failure to control the turn needle properly when using the turn-and-slip indicator.

e. Incorrect pressures being exerted on rudders, ailerons, pedals, or cyclic control.

4—26. Instrument Interpretation and Cross-Checking

In instrument flight, instruments must be properly cross-checked and correctly interpreted in order to exert proper control of the aircraft in the desired flightpath and to detect any malfunctioning of the instruments. During instrument flight, the instruments provide (1) a reference of the attitude of the aircraft, (2) a reference for the use of power, and (3) an indication of whether the combination of attitude and power is producing the desired performance. Control and trim techniques during instrument flight are identical to those used during visual flight.
CHAPTER 5
BASIC INSTRUMENT MANEUVERS

Section I. FIXED WING

5—1. General

Basic instrument maneuvers are those taught and practiced to obtain proficiency in instrument interpretation, aircraft attitude control, power control, and instrument cross-check.

5—2. Introduction

The method of performing each maneuver is discussed initially under the assumption that all flight instruments are operational (full panel). Then the performance of the maneuver is discussed as if certain instruments are not operational (emergency panel). Except where prohibited by regulation, an emergency panel may be simulated by covering the face of an instrument or by other simulated failure procedures. Refer to chapter 4 for information as to the use of the individual instruments in pitch attitude, bank attitude, and power control.

5—3. Instrument Takeoff

Aviators should be proficient and fully confident in their ability to take off with little or no visual references other than the flight instruments. For an instrument takeoff to be performed, all flight instruments must be operational. The aviator should consult the aircraft operator's manual for the recommended procedures for performing the instrument takeoff. The method outlined in a and b below is general in nature and may be used where applicable to supplement the instructions set forth in the operator's manual.

a. Aline the aircraft with and on the centerline of the takeoff runway and allow it to roll forward for a short distance to insure that the nosewheel or tailwheel is centered. Hold the brakes firmly and advance the throttles to slightly above idling. Check all flight instruments for correct indications and perform any checklist requirements. After takeoff clearance is received, fully release the brakes and smoothly apply takeoff power. If there are any outside visual references, use them for directional control in the initial part of the takeoff roll. Use brakes only if absolutely necessary for directional control. Any use of brakes will extend the takeoff roll. As the takeoff progresses, the aviator should transition from outside references to the heading indicator and the attitude indicator. Maintain directional control by reference to the heading indicator. Use ailerons only if a bank is indicated on the attitude indicator. As the takeoff roll progresses, bring the airspeed indicator into the cross-check along with the heading indicator and the attitude indicator. When the recommended airspeed is attained, adjust the pitch attitude on the attitude indicator as recommended by the operator's manual. The aircraft should then fly off the ground.

b. After takeoff, maintain directional control with the heading indicator, maintain the recommended pitch attitude and wings level on the attitude indicator, and begin including all other flight instruments in the cross-check. Wait for the altimeter and vertical speed indicator to begin indicating a climb before performing any after-takeoff checklist. Now, if necessary, very carefully adjust the pitch attitude to cause the airspeed to increase at a steady rate toward recommended climbing speed and at the same time insure that the vertical speed indicator shows a steady climb. Control the bank attitude to maintain or correct back to the takeoff heading. Cross-check the turn needle to see if the bank attitude is being indicated correctly on the attitude indicator. As the recommended climb airspeed is attained, reduce power as recommended for climb and adjust pitch attitude as necessary to maintain climbing airspeed.

c. Common errors in instrument takeoffs are—

(1) Improper alinement of the aircraft on the runway.
(2) Failure to use sufficient nosewheel steering and/or rudder to maintain takeoff heading.
(3) Failure to maintain takeoff attitude until a climb is indicated.
(4) Allowing airspeed to go too high before applying takeoff attitude.
(5) Pitch attitude adjustments too large while aircraft is accelerating to climbing airspeed.

5—4. Straight-and-Level Flight

a. Altitude Control. Cross-check the altimeter to
see if the desired altitude is being maintained. If not, correct pitch attitude on the attitude indicator in order to maintain or correct back to the desired altitude. The indications of the vertical speed indicator are used to detect and alert the aviator to possible changes in the desired altitude. If the attitude indicator becomes inoperative, use the vertical speed indicator to assist in maintaining and correcting to the desired altitude.

b. Heading Control. Cross-check the heading indicator to see if the desired heading is being maintained. If not, then correct banking attitude on the attitude indicator to maintain or correct back to the desired heading. Check the turn needle to see if the banking attitude is being correctly displayed on the attitude indicator. Use the standby or magnetic compass to see if the heading is being displayed correctly on the heading indicator. If the heading indicator becomes inoperative, use the attitude indicator to maintain or correct back to the desired heading on the magnetic compass. If both the heading and attitude indicators become inoperative, use the turn needle to make straight flight corrections and heading corrections on the magnetic compass. If turns are required to correct the heading, use the procedures contained in paragraph 5-5.

c. Airspeed Control. Cross-check the airspeed indicator to see if the desired airspeed is being maintained. If not, adjust the power control instruments in order to maintain or correct back to the desired airspeed. Pitch control will be adjusted as required to maintain a constant altitude. If the airspeed indicator becomes inoperative, use power settings that have previously produced the desired airspeed for any maneuver or configuration.

d. Power Control. Use the power normally required or recommended for a maneuver by referring to the power control instruments. If the power application does not produce the desired airspeed, then make a correction using the power control instruments.

e. Trim. Changes in power applied, airspeed, configuration, altitude, and loading require trim changes. Maintain the desired aircraft attitude and balanced flight by using trim adjustments as required. See chapter 4 for trim instructions.

f. Common Errors in Straight-and-Level Flight are—

(1) Failure to maintain heading.

(2) Using incorrect procedures to correct heading.

(3) Failure to use attitude indicator properly for maintaining altitude.

(4) Not using power control instruments for airspeed adjustments.

(5) Failure to cross-check all instruments in order to detect any instrument malfunction.

(6) Failure to keep aircraft trimmed for balanced flight.

5-5. Straight Climbs and Descents

a. Constant Airspeed, Constant Power Climbs. To enter a constant airspeed climb using recommended climb power settings, adjust the pitch attitude on the attitude indicator to that which will start the aircraft climbing. Use a pitch attitude that has previously been known to enter the climb smoothly and gradually. There may be a few seconds before the altimeter and vertical speed begin to indicate a climb. Advance power on the power control instruments to the recommended setting. To maintain the desired climbing airspeed, adjust the attitude as required and cross-check the power instruments in order to maintain a constant power setting. Variations in the indication of the vertical speed indicator may be used to alert the aviator to the need for pitch adjustments.

b. Constant Airspeed, Constant Rate Climbs. When entering this climb, adjust the pitch attitude as recommended in a above. Adjust the power to the settings that have previously been used to perform this maneuver. As the vertical speed indicator approaches the desired rate of climb, adjust the pitch attitude to maintain that rate of climb and adjust the power as necessary to maintain the desired airspeed.

c. Level Off From Climbs. As the aircraft approaches the desired altitude, adjust the pitch attitude on the attitude indicator so that the rate of climb slowly decreases and the altimeter stops on the desired altitude. As a guide, use 10 percent of the indication of the vertical speed indicator to compute the altitude at which to start this pitch attitude adjustments (e.g., when leveling off at 5,000 feet with a rate of climb of 800 feet per minute, start the pitch attitude adjustment as the altimeter moves past 4,920 feet). Adjust power as required to maintain a desired airspeed or adjust to a computed power setting for cruise operation.

d. Constant Airspeed, Constant Rate Descent.

(1) To enter this type descent when a change in airspeed is not desired, adjust the pitch attitude on the attitude indicator. At the same time reduce power as required to maintain the airspeed. As the vertical speed approaches the desired rate of descent, adjust the pitch attitude as required to maintain this rate.
(2) Two methods are recommended for entering this type descent when a reduction in airspeed is desired. In both methods, once the descent has been stabilized, use pitch attitude adjustments to maintain the desired rate of descent and power to maintain the desired airspeed.

(a) If there is not a requirement to leave the altitude immediately, reduce the power to that setting which will normally maintain the desired descending airspeed, maintain altitude with pitch attitude adjustments until the airspeed approaches the descending airspeed, then lower the pitch attitude to enter the descent.

(b) If there is a requirement to leave the altitude immediately, lower the pitch attitude to enter the descent and at the same time reduce power to a setting well below that which will normally maintain the airspeed in the descent. This will allow the airspeed to gradually decrease to that desired for the descent.

e. Leveloff From Descents. To compute the altitude at which the pitch attitude must be adjusted to stop the descent on the desired altitude, use 10 percent of the rate of descent indicated on the vertical speed indicator (e.g., to level off at 5,000 feet from a descent rate of 500 feet per minute, the leveloff should be started at 5,050 feet). As the desired altitude is reached, maintain it with pitch attitude control and adjust the power to maintain the desired airspeed.

f. Heading Control. Maintain heading control as recommended in paragraph 5-4b.

g. Trim. Adjust trim as required to maintain desired aircraft attitude and balanced flight.

h. Emergency Panel. If the attitude indicator is not available, maintain level flight and heading control as recommended in paragraph 5-4. During a constant airspeed, constant power climb, use the airspeed indicator to make required pitch attitude adjustments. The trend of the vertical speed indicator also aids in pitch attitude control. During a constant airspeed, constant rate climb or a constant airspeed, constant rate descent, use the vertical speed indicator for pitch attitude adjustments.

i. Common Errors in Straight Climbs and Descents are—

(1) Failure to maintain heading.
(2) Failure to coordinate pitch attitude and power adjustments where necessary.
(3) Improper lead when leveling off.
(4) Failure to make pitch attitude adjustments with the attitude indicator.
(5) Failure to adjust pitch attitude and power as altitude or configuration changes.

5-6. Level Turns

a. Entry. To perform a level turn (fig 5-1), first establish a bank in the direction of turn by coordinated pressure on the ailerons and rudder. Control both pitch attitude and bank attitude by the attitude indicator during the entry: As the banking pointer reaches the desired angle of bank, relax the control pressures or use slight opposite control pressures as may be required to stop and hold the bank. Cross-check the indication of the turn needle to see if it is deflected in the direction of the turn and that the deflection is proportional to the angle of bank being used. Resume cross-checking of all instruments. Loss of vertical lift may require an adjustment of pitch attitude to hold altitude. Any pitch attitude adjustment may require a power change if it is desired that a constant airspeed be maintained.

b. Recovery. To recover to straight-and-level flight, apply coordinated pressure to the ailerons and rudder in the direction opposite to the turn. Control pitch attitude and bank attitude by reference to the attitude indicator. Continue the control pressures so that the banking pointer moves steadily to the zero bank position. Relax control pressures or use slight opposite control pressures as required to stop and hold the heading pointer at zero. Resume cross-checking of all instruments. If the pitch attitude was adjusted during the turn, be prepared, at the first indication of a climb on the altimeter or vertical speed indicator, to readjust the pitch attitude to maintain altitude. If the power was adjusted during the turn, reset it to the former level flight setting when the airspeed is as desired. After rolling out of a turn, the attitude indicator display may be slightly inaccurate because of precession errors caused by the turn. Until the attitude indicator is operating properly, cross-check the heading and pitch attitude control instruments for any required attitude adjustments.

c. Trim. Adjust trim as necessary to maintain the desired attitude and balanced flight.

d. Emergency Panel. Without the use of the attitude indicator, control the turn entry, the rate of turn, and the recovery from the turn by reference to the turn needle.

e. Common Errors in Level Turns are—

(1) Failure to coordinate aileron and rudder pressures during the entry and recovery.
(2) Losing the correct pitch attitude during entry and recovery.
(3) Failure to stop the bank at the desired angle.
(4) Failure to stop the rollout when the banking pointer returns to zero.
(5) Failure to maintain a constant rate of turn.

5–7. Turns to Headings

a. Entry and recovery control techniques for turns to headings are the same as those for level turns (para 5–6). The angle of bank used should not be more than the number of degrees to be turned, and should not exceed the angle of bank for a standard rate turn (fig 5–2). To roll out of the bank with the heading indicator on the desired heading, the rollout must begin prior to reaching the desired heading. This “lead” or early initiation of the rollout will depend on the angle of bank being used and on the rate of roll used by the aviator. As a guideline, use 1° of lead for every 2° of bank. For example, in a right turn to a heading of 90° and using 28° of bank, the rollout would begin as the heading indicator passes 76°. To determine if the proper amount of lead was used, check the heading indicator after the wings are level. A variation from the desired heading would indicate the need for a change in lead for future turns.

b. If the attitude indicator is not available, the rollout lead can be determined by using the same number of degrees for rollout as were required to establish the turn on roll-in. If the heading indicator is not available, timed turns (para 5–9) or compass turns (para 5–11) will be required.

c. Common errors in turns to headings are as follows:

(1) Failure to use proper bank for number of degrees to be turned.

(2) Failure to use proper lead in rollout.

Figure 5–1. Level turns.
(3) Failure to use same rate of roll on roll-in and rollout of the turn.

5-8. Steep Turns

a. Turns greater than standard rate or any turn exceeding 30° bank is considered a steep turn. Determine the rate of turn by the attitude indicator or the turn-and-slip indicator. A 4-minute turn needle should indicate a minimum of a 3-needle width deflection, while a 2-minute turn needle should indicate a minimum of a 1½-needle width deflection. This type of turn is seldom necessary or advisable in instrument weather, but it is a good test of the ability of the aviator to react quickly and smoothly to changes in attitude of the aircraft. Regardless of the degree of bank, the techniques of entry and recovery are the same in steep turns as in any other turns. When the bank is steep, however, it is more difficult to control the pitch attitude. This is due to the large variation in the vertical lift components. During the entry to the turn, cross-check the pitch attitude control instruments rapidly so that the pitch attitude may be adjusted upward at the first indication of any altitude loss. After the desired angle of bank has been established, there may be a requirement to hold aileron and rudder pressures opposite the direction of turn in order to prevent the bank from increasing. The tendency in steep turns for the bank to increase is called the “over-banking tendency.” The slight extra speed of the wing on the outside of the turn increases as the bank increases. At the steeper angles of bank, this extra speed will overbalance the lateral stability of the aircraft and cause the bank to continue to increase unless control action is taken to resist it. Increase power as required to maintain the desired airspeed. On the rollout, decrease the pitch attitude as required to maintain altitude and the power as required to maintain airspeed. The use of instruments in the steep turn is the same as in standard rate turns.

b. Errors common in steep turns include—
 (1) Failure to maintain altitude.
 (2) Failure to maintain proper airspeed.
 (3) Improper power and pitch attitude control during entry and recovery.
 (4) Improper bank attitude and pitch attitude control.

5-9. Timed Turns

a. In a timed turn, the heading of the aircraft is changed a definite number of degrees with reference to the clock and the turn needle. It may be easiest to start the timing when the second hand is at the 3-, 6-, 9-, or 12-o’clock position.

b. Before practicing timed turns, calibrate the turn needle to determine the accuracy of the needle indications. Establish a turn with the needle deflection for a standard rate turn, and note the angle of bank on the attitude indicator. As the second hand passes a convenient point to start the timing, note the heading on the heading indicator. At each 10-second interval, note the heading again. If the heading change is 30° each interval, the turn needle deflection is correct for a standard rate turn (3° per second); if not, change the angle of bank and resulting needle deflection until the turn is standard rate (3° per second). When the turn needle has been calibrated in both directions of turn, note the corrected deflection, if any, and apply it during all timed turns.

c. Timed turns are normally entered from straight-and-level flight. To enter a timed turn, maintain heading until the second hand arrives at the desired position, then start the roll-in.
d. The number of degrees to be turned governs the length of time and rate of turn. Turns of 20° or more are made at standard rate; turns of less than 20°, at half-standard rate. Normally, turns to headings will be in the shortest direction of turn. For example, starting a timed turn from heading of north (A, fig 5-3) and turning right to a heading of 120° (B, C, and D, fig 5-3) takes 40 seconds. If the time and the roll-in are started with the second hand in the 12-o'clock position, the rollout will start when the second hand is on the 40-second position (C, fig 5-3). The same rate of rollout is used as was used to roll into the turn. In this way the delay in reaching a standard rate turn indication on roll-in will be cancelled by the delay in reaching a wings-level condition on rollout. Upon completion of the rollout, the aircraft should be on the desired heading (D, fig 5-3). When using a half-standard rate turn (1½° per second), it is easier to compute the time by first computing for a standard rate turn (3° per second) and then double the time.

e. Errors common in timed turns include—
(1) Improper direction of turn.
(2) Improper rate of turn.
(3) Failure to enter and recover from timed turns at the same rate.
(4) Failure to compute time correctly for turns.

5–10. Climbing and Descending Turns

a. To execute climbing and descending turns, combine the technique used in straight climbs and descents with the various turn techniques. For proficiency training it is recommended that the climbs and descents be made at a definite rate and that the maneuver be checked against time—both in altitude change and in degrees of turn. If the timing is in error, make the leveloff on the desired altitude and rollout of the turn on the desired heading. When entering a turn while performing a rate climb or descent, be prepared to adjust the pitch attitude upward to maintain the desired vertical speed and to add power to maintain the airspeed.

b. Common errors in climbing and descending turns are—
(1) Failure to detect a need for a change in rate of turn or vertical speed.
(2) Overcontrolling power, pitch attitude, or bank attitude.
(3) Those errors associated with turns, timed turns, climbs, and descents.

5–11. Compass Turns (fig 5–4 and 5–5)

a. The magnetic compass is a basic direction-indicating instrument. It is simple in construction and is highly reliable. If all other direction-indicating instruments fail in flight, the aviator will be forced to use the magnetic compass to determine the aircraft heading. However, the inherent
characteristics of the compass must be understood to be able to turn the aircraft to a magnetic heading and maintain it.

b. With an angle of bank between 12° and 18° (and the rate of turn not to exceed a standard rate), the amount of lead or lag to be used when turning to headings of north and south varies with, and is approximately equal to, the latitude of the locality over which the turn is made. This lead or lag is at a minimum over the Equator and increases as the latitude increases, reaching its maximum at the polar regions. The angle of bank must be accurately held to attain success in turns to magnetic compass headings. The compass reading is reliable only when the aircraft is in a wings-level and constant-pitch attitude at a constant airspeed.

c. In the Northern Hemisphere, when turning to a heading of north, the rollout lead must be the number of degrees equal to the latitude plus one-half the angle of bank used in the turn (fig 5-5). For example, during a left turn to a heading of

Figure 5-5. Compass turn maneuver procedure.
north in a locality where the latitude is 30° and the angle of bank is 15°, start the rollout when the magnetic compass reads 37.5° (30° plus one-half of 15°). To turn to a heading of south, turn the aircraft past south the number of degrees equal to the latitude minus one-half the angle of bank used in the turn (fig 5-5). For example, when turning to the right to a heading of south, the rollout is started when the magnetic compass reads 202.5° (180° plus 30° minus 7.5°). When turning to a heading of east or west the usual lead for rollout (one half the angle of bank) is used. When turning to other than cardinal headings, the lead or lag must be interpolated. South of the Equator, lead and lag are reversed.

d. Errors common in compass turns include—
 (1) Failure to level the wings upon completion of turn.
 (2) Failure to maintain an angle of bank of 12° to 18°.
 (3) Failure to maintain proper attitude.

5–12. Unusual Attitudes and Recoveries

a. General. An unusual attitude is any attitude of the aircraft not required for normal instrument flight. An unusual attitude may result from any one or a combination of several causes. Some of these causes are turbulence, vertigo, confusion, distraction from flight instruments, and failure of flight instruments.

b. Recognizing Unusual Attitudes. Normally, an unusual attitude is recognized in one or more of the following—an attitude on the attitude indicator that is not typical of the maneuver being performed or an attitude that is rapidly changing to an extreme position of pitch and/or bank; indications on the heading indicator or turn needle of the aircraft entering a rapid turn from straight flight or increasing its rate of turn extremely from a normal instrument flight turn; and/or indications of the altimeter, airspeed, and vertical speed changing rapidly from those indications that are normal to the maneuvers being performed. When any of these situations occur, increase the speed of cross-checking to determine quickly if the problem is caused by failure of one or more instruments. Failure of an instrument can be detected by comparing its indications with the other instrument indications. Common failures are those of the attitude indicator (especially if it is the spillable type) and the heading indicator. A quick reference to the turn-and-slip indicator will verify whether or not the turn indications on the attitude indicator or heading indicator are normal for the maneuver being performed. Reference to the other pitch attitude control instruments (airspeed indicator, altimeter, and vertical speed indicator) will verify whether or not the pitch attitude on the attitude indicator is normal for the maneuver being performed. However, if the aviator cannot confirm instrument failure with a quick cross-check, he should promptly apply the procedures for recovery from unusual attitudes.

c. Recovery From Unusual Attitudes. (These procedures should be modified or supplemented by any instructions contained in the operator's manual for the aircraft.) When a recovery from an unusual attitude is required, the initial control actions should be made using the power instruments, altimeter, airspeed indicator, vertical speed indicator, and turn-and-slip indicator. The indications of the attitude indicator and heading indicator should be disregarded until it can be ascertained by cross-checking with the other instruments that they are operating properly. The nonspillable attitude indicator may be used when known to be operating correctly. Control movements should be smooth but applied firmly enough so that the aircraft will promptly move to the desired attitude. Coordinated movement of the control will hasten the recovery and prevent abnormal stress on the aircraft. If the aircraft is in a diving or nose-low pitch attitude as shown by a loss of altitude, an increase in airspeed, and an indication of a descent on the vertical speed indicator, reduce power in proportion to the indication and trend of movement of the airspeed indicator, center the turn needle and ball with coordinated aileron and rudder pressure, and apply an upward pitch attitude correction until the altimeter and airspeed movements begin to cease. The aircraft is then approaching level flight. When the indications of the altimeter and airspeed indicator begin to reverse their direction of movement, the aircraft is passing through level flight attitude. To remain at or near level flight attitude, some of the pressure to adjust pitch attitude should be released at this time. Incorporate the attitude indicator and heading indicator in the cross-check if they appear to be operating normally. If required by the instructor or if operating under direction of Air Traffic Control, take action to return to the original heading, altitude, and airspeed. If the aircraft is in a climbing or nose-high pitch attitude as shown by a gain of altitude, a loss of airspeed, and an indication of a climb on the vertical speed indicator, apply power in proportion to the indication and trend of movement of the airspeed indicator, apply downward pitch attitude correction until the altimeter and airspeed movements begin to cease, center the turn needle and ball, and then as the altimeter and airspeed start to reverse their movement, release some of the control pressure that was required for the pitch attitude.
adjustment. The remaining procedures are the same as those performed above after recovering from a descending attitude.

d. Control Actions. Remember that the initial recovery actions can be applied simultaneously but the sequence of actions should not be changed. Prompt power adjustments in a nose-high attitude will aid in preventing a stall or spin, and in a nose-low attitude will aid in preventing excessive buildup of airspeed and loss of altitude. A prompt correction, such as a banking attitude in a dive, will aid in adjusting the pitch attitude and in preventing excessive loss of altitude. Prompt lowering of the pitch attitude in a climbing attitude will aid in preventing a stall or spin. In all cases, prompt, smooth, coordinated control actions should be taken in order to recover from the unusual attitude with a minimum change in altitude and without exceeding the limitations of the airframe or engine.

e. Spatial Disorientation. After recovery from an unusual attitude, the aviator may suffer from vertigo or spatial disorientation for some time. Instrument cross-check must be continuous and an attempt be made to relax any unneeded pressures on the controls. This gives the aircraft an opportunity to resume balanced or coordinated flight. An uncoordinated flight condition will frequently induce or prolong spatial disorientation. Relaxing the control pressures will aid in preventing the application of unneeded control pressures that may be induced by spatial disorientation.

f. Spins. If an unusual attitude results in a spin, apply recovery procedures as outlined in the operator’s manual for the aircraft. A spin is indicated on the flight instruments in the following manner:

1. Turn needle displaced fully in the direction of spin, with the ball usually displaced fully in the direction opposite to the turn needle. However, occasionally the ball will oscillate back and forth across the center of the tube.

2. The needle of the airspeed indicator will be hovering at the stall airspeed.

3. The vertical speed indicator will indicate a high rate of descent.

4. The altimeter will indicate a rapid loss of altitude.

5. The indications of the attitude indicator and heading indicator should be disregarded as they will probably be erroneous or too difficult to use for a recovery. After spin recovery procedures are applied, closely check the turn needle for a sudden movement back toward center. This indicates that the rotation of the aircraft has been stopped. Promptly center the rudder pedals so that the aircraft will not begin rotation in the opposite direction. Complete the recovery by using the procedure for recovery from a dive. Make pitch adjustments carefully while the airspeed is still low. Refer to the tum-and-slip indicator to insure that the wings remain level.

g. Common errors in recovery from unusual attitudes are—

1. Failure to adjust power adequately.

2. Executing procedures in incorrect sequence.

3. Failure to recognize level flight pitch attitude.

4. Allowing excessive altitude variation during recovery.

5. Failure to maintain required heading, altitude, or airspeed after recovery.

Section II. ROTARY WING

5-13. Introduction

Since the advent of helicopter flight, field commanders have desired the use of helicopters in both good and adverse weather conditions in order to gain tactical advantage and the element of surprise through increased mobility.

a. The basic principle of helicopter instrument flight under any and all weather conditions stems from the application of fundamentals for VFR helicopter flight. There are only two elements of control in all aircraft—the attitude of the aircraft to the horizon and the power applied. Therefore, all maneuvers must be based solidly upon attitude and power control references. Airspeed is a result of attitude control; altitude is a result of power control. To properly change to or hold any desired altitude, the aviator must have a tentative estimate of basic power settings for climb, cruise, and descent.

b. The maneuvers discussed in this section are designed to develop proficiency in the attitude control of rotary wing aircraft and can be considered as the first step in fulfilling the requirement of all-weather operations.

c. The method of performing each maneuver presupposes full panel and emergency panel, with the exception of the instrument takeoff. Perform the instrument takeoff with full panel. Except where prohibited by directives, emergency panel is simulated by covering one or more of the flight instruments or by deactivating certain flight instruments.
d. Airspeeds and power settings will be as recommended in the operator's manual for the aircraft.

The following procedures for making an instrument takeoff will be modified or changed as necessary to conform with any procedures set forth in the operator's manual for the aircraft:

a. Adjust the attitude indicator by setting the miniature aircraft as appropriate for the aircraft being flown. After the aircraft is aligned with the runway or takeoff pad, to prevent forward movement of helicopters equipped with wheel-type landing gear, set the parking brakes or apply the toe brakes. If the parking brake is used, it must be unlocked after the takeoff has been completed. Apply sufficient friction to the collective pitch control to minimize overcontrolling and to prevent collective pitch creeping. However, in order not to limit pitch control movement, the application of excessive friction should be avoided.

b. After a recheck of all instruments to see if they are operating properly, start the takeoff (fig 5–6) by applying collective pitch and a predetermined power setting (more than is necessary for hovering but not exceeding maximum allowable power—depending on the aircraft being flown).

Add power smoothly and steadily to gain airspeed and altitude simultaneously, and to prevent setting to the ground. As power is applied and the helicopter becomes airborne, pedals are used initially to maintain the desired heading. At the same time apply forward cyclic control to start the acceleration to climbing airspeed. In the initial acceleration, the attitude of the aircraft, as read from the attitude indicator, should be one to two bar widths below the horizon. As airspeed increases to the appropriate climb airspeed, adjust the nose of the aircraft gradually to the climb attitude. As climbing airspeed is reached, reduce power to the climbing power setting and transition to fully coordinated flight.

c. During the initial climb-out, minor corrections to heading should be made with pedals only until sufficient airspeed is attained to transition to coordinated flight. A rapid cross-check must be started at the time the aircraft leaves the ground and should include all available instruments.

d. Errors common in the instrument takeoff include—
 (1) Failure to maintain heading.
 (2) Overcontrolling pedals.
 (3) Failure to use required power.
 (4) Failure to adjust pitch attitude as climbing airspeed is reached.
(5) Failure to cross-check all available instruments.
(6) Overcontrolling pitch attitude.

5-15. Straight Climb

a. The straight climb (fig 5-7) can be entered from normal cruise.

b. To enter a climb from normal cruise, increase power to the setting which will produce a 500 fpm rate of climb. As power is increased, a correction for trim is made with pedals. If cruise and climb airspeeds are the same, there will be no apparent change of attitude, as read from the attitude indicator. If the amount of power applied does not produce the desired rate, make minor adjustments. As a rule of thumb, a change of 1 torque pound will change the rate of climb 100 fpm.

c. During climb, the heading, attitude, and airspeed are maintained with cyclic control. Rate of climb is controlled with power. Trim is maintained with pedals. Although the amount of lead varies with the aircraft and individual technique, a lead of approximately 40 feet should be used to level off at a desired altitude.

d. To level off at normal cruise, the cyclic is adjusted to establish the desired attitude with reference to the attitude indicator. Power is adjusted to maintain normal cruise airspeed.

e. Errors common in straight climbs include—
 (1) Improper use of power.
 (2) Overcontrolling pitch attitude.
 (3) Failure to maintain heading.
 (4) Failure to level off at the desired altitude.
 (5) Failure to maintain adequate cross-check.

5-16. Straight-and-Level Flight

a. Exact straight-and-level flight is possible only under ideal conditions, which rarely exist. Turbulence may cause changes in the helicopter’s attitude, altitude, and heading. In every flight attitude, the forces acting on the helicopter have a definite relationship. These forces (lift, weight, drag, and thrust) must be in balance for straight-and-level, unaccelerated flight. When an instrument indicates a need for an adjustment to maintain a given performance, other instruments will reflect the amount and direction in which the adjustment should be made. For example, if the

Figure 5-7. Straight climb.
airspeed indicator shows a decrease in airspeed, the torque pressure and/or altimeter will indicate the adjustment to be made in power and/or altitude. When altitude, airspeed, and level flight are being maintained, the miniature airplane of the attitude indicator should be adjusted to reflect the level flight attitude; thereafter, any deviation in attitude can be read directly from the attitude indicator (fig 5–8). Since the miniature aircraft is set for level flight at normal cruise, it will be seen as an approximate one-bar above-the-horizon indication when the aircraft is in level flight at slow cruise. Make corrections for attitude when any deviation is observed.

b. Any deviation from the desired heading will be shown on the heading indicator. Immediate and smooth application of cyclic control is initiated to return the aircraft to the desired heading. The sooner a need for a correction is observed, the smaller the amount of correction needed. For deviations of 20° or more, use a standard rate turn. For deviations of less than 20°, a half-standard rate turn is sufficient. Any time an instrument indicates a change in attitude, correction should be made. Then, instead of watching that particular instrument to see the effects of the adjustment, the cross-check is continued before finally returning to the original instrument. In this way, the entire panel will reflect the total effect of the adjustment. A helicopter does not remain in any given attitude; therefore, by the time a cross-check has been completed and the necessary adjustments have been made, another cross-check must be initiated.

c. During straight-and-level flight, heading and altitude are maintained with cyclic control; airspeed with power; trim with pedals. Power is used to adjust minor variations of altitude only if the desired altitude cannot be maintained by varying pitch attitude without exceeding ± 10 knots airspeed.

d. Errors common in straight-and-level flight include—
 (1) Failure to maintain heading.
 (2) Failure to maintain altitude.
 (3) Failure to cross-check all available instruments.
 (4) Overcontrolling power and pitch attitude.
5–17. Straight Descents

a. Straight descents can be entered from either normal or slow cruise. To enter a descent (fig 5–9), reduce power to the setting which results in the desired rate of descent. To maintain trim as the power is reduced, a correction for torque is made with pedals. If the initial power reduction does not produce the desired rate of descent, additional adjustment is made using the rule of thumb described in paragraph 5–15b.

b. During descent, the heading, attitude, and airspeed are maintained with cyclic control. Rate of descent is controlled with power. Trim is maintained with pedals. To level off from the descent, power is applied prior to reaching the desired altitude. This will check the downward movement in sufficient time to prevent going below the desired altitude. The amount of lead depends on the weight of the aircraft and the rate of descent. For a 500 fpm rate of descent, the lead is normally 40 feet.

c. When the proper altitude for starting the leveloff is reached, power is applied to the predetermined power setting and the vertical speed is checked to determine if level flight has been established. The altimeter and airspeed indicator should also be checked at this time to insure flight is at the proper airspeed and altitude.

d. Errors common in straight descents include—

1. Failure to maintain heading.
2. Failure to establish desired rate of descent.
3. Failure to maintain proper trim.
4. Failure to level off at desired altitude.
5. Overcontrolling pitch attitude.

5–18. Turns

Determine the angle of bank necessary to produce a standard rate turn by the true airspeed of the aircraft. At an airspeed of 70 to 90 knots, the angle of bank of the standard rate turn is approximately 12° to 15°, as read from the attitude indicator. The number of degrees to be turned governs the amount of bank to be used. A change in heading of 20° or more requires a standard rate turn (3° per second) and is shown as a 2-needle

Figure 5–9. Straight descent.
deflection on the 4-minute turn-and-slip indicator. For changes of less than 20°, one-half standard rate is sufficient, and is shown as a 1-needle deflection.

5-19. Level Turns

a. To enter a turn, a movement of the cyclic control is applied in the direction of the desired turn (fig 5-10). The roll-in should be smooth and steady and should take approximately 4 to 6 seconds. The initial bank is started with reference to the attitude indicator. When the desired angle of bank and rate of turn have been attained, control pressure should be relaxed to prevent overbanking. To recover to straight-and-level flight, coordinated movement of the cyclic control is applied in a direction opposite to the established turn. The rate of rollout should be the same as the rate of roll-in. Straight-and-level flight should be established with reference to all available instruments.

b. Errors common in level turns include—
 (1) Failure to maintain constant rate of turn.
 (2) Failure to maintain altitude.
 (3) Failure to maintain airspeed.
 (4) Varying rate of roll-in and rollout.

5-20. Turns to Headings

a. A turn to a heading (fig 5-11) consists of a level turn to a specific heading as read from the heading indicator, and is performed at normal

Figure 5-10. Level turns.
Turns to specified headings should be made in the shortest direction. The turn is entered and maintained as described in the level turn maneuver. Since the aircraft will continue to turn as long as the bank is held, the rollout must be started before reaching the desired heading. The amount of lead used to roll out on a desired heading should be equal to one-half the angle of bank. The rollout on a heading is performed in the same manner as the rollout of the level turn. When the heading for starting the rollout is reached, cyclic control is applied in the direction opposite the turn.

b. Errors common in turns to headings include—

(1) Failure to use proper lead in rollout of the turn.
(2) Failure to maintain altitude.
(3) Failure to recover from the turn with the proper heading and altitude.
(4) Overcontrolling pitch and bank attitudes.

5–21. Compass Turns
Refer to paragraph 5–11 for the procedure for making compass turns.

5–22. Steep Turns
a. Any turn greater than standard rate is considered a steep turn; however, for practice, a 4-minute turn needle should indicate a 3- to 3 1/2-needle width turn. A steep turn is seldom necessary or advisable in instrument weather, but it is a good test of the individual’s ability to react quickly and smoothly to changes in aircraft attitude. The technique of entry and recovery are the same as for any turn maneuver. Rate of turn and attitude are maintained with cyclic control; airspeed and altitude are maintained with power.

b. Errors common in steep turns include—

(1) Failure to maintain altitude.
(2) Failure to hold a constant rate of turn.
(3) Failure to maintain airspeed.

5–23. Timed Turns
a. In a timed turn, the heading of the aircraft is changed a definite number of degrees with reference to the turn-and-slip indicator and the clock. For practice, the timed turn is performed at normal cruise with the heading and attitude indicators covered. To perform accurate timed turns, the needle of the turn-and-slip indicator must be calibrated in both left and right turns.

b. To calibrate the turn needle, the approximate angle of bank for a standard rate turn is established with reference to the attitude indicator. Necessary changes are made to produce an indication of a standard rate turn with reference to the turn needle. Unless oscillations of the turn needle are of equal distance on either side of the standard rate position, (averaged out) errors will result in the rate of turn. After establishing the rate of turn, the position of the second hand and the heading are noted. The rate of turn is maintained until a predetermined time has elapsed—and the heading is noted again.

c. Exact timing is very important. If the turn needle is in calibration, a standard rate of turn for 10 seconds will produce a change in heading of 30°. Any deviation is corrected by changing the position of the turn needle so that a turn of 3° per second results. When the needle is properly calibrated, the position is carefully noted and used during all standard rate turns.

d. Prior to starting the turn, the time necessary to turn to the new magnetic heading must be computed. To compute the time in seconds, the angular difference (shortest direction) between the present heading and the new heading is divided by three.

e. The techniques of entry and control of the timed turn are the same as for the level turn (para 5–19). The position of the second hand of the clock must be noted when the turn is started (fig
5–16. For ease in timing, it is best to start the time when the second hand passes the 3-, 6-, 9-, or 12-o’clock positions. The standard rate of turn must be maintained until the predetermined time has elapsed, then the rollout is started. The rate of rollout is the same as the rate of roll-in. After straight-and-level flight is established, the compass should indicate the desired heading.

f. Errors common in timed turns include—
 (1) Failure to maintain a standard rate turn.
 (2) Failure to correctly compute the time to complete the turn.
 (3) Failure to use the same rate of roll-in and rollout of the turn.
 (4) Failure to maintain altitude.

5–24. **Climbing Turns**

a. A climbing turn (fig 5–13) is a combination of a climb and a turn as discussed previously in paragraphs 5–15, 5–18, 5–20, and 5–21. For practice, a climbing turn consists of a climb of 500 feet and a turn of 180° in 60 seconds. In this maneuver the rate of climb and the rate of turn are both checked against time. The climbing turn is generally performed at normal cruise and requires a very rapid cross-check for precise execution.

b. The climbing turn (fig 5–13) is started as the second hand of the clock passes the 3-, 6-, 9-, or 12-o’clock positions. As the power is applied to the predetermined setting, torque corrections should be made with pedals to maintain trim. The initial bank should be established with reference to the attitude indicator. To maintain the rate of turn, minor bank corrections are made with reference to the turn-and-slip indicator. During the climbing turn, the rate of turn and airspeed are maintained with cyclic control; the rate of climb, with power; and trim, with pedals. Power is used to adjust the rate of climb if deviation from desired airspeed is ± 5 knots. (The ± 5 knots is used for minor pitch correction during climbs and descents.) After 30 seconds, the aircraft will have turned approximately 90° and climbed approximately 250 feet. If the instruments indicate other than the desired readings, the rate of climb and/or turn should be adjusted as necessary. A further check can be made at the expiration of 45 seconds. Adjustments in the rate of climb and/or turn should again be made if necessary. Normally, the recovery should be started as the second hand reaches the original starting position (60 seconds). However, regardless of the time factor, a recovery should be made when the desired heading and altitude have been reached.

c. Errors common in climbing turns include—
 (1) Failure to detect a need for a change in rate of turn and/or climb.
 (2) Improper use of power.
 (3) Improper use of pedals.

5–25. **Descending Turns**

a. A descending turn (fig 5–14) is a combination of a descent and a turn as discussed previously in paragraphs 5–17, 5–18, 5–20, and 5–21. For practice, a descending turn consists of a descent of 500 feet and a turn of 180° in 60 seconds. In this maneuver the rate of descent and the rate of turn are both checked against time. The descending turn is generally performed at normal cruise airspeed and requires a very rapid cross-check for precise execution.

b. The descending turn is started as the second hand of the clock passes the 3-, 6-, 9-, or 12-o’clock position. As the power is reduced to the predetermined setting, torque correction should be made with the pedals to maintain trim. The initial bank should be established with reference to the attitude indicator. To maintain the rate of turn, minor bank corrections are made with reference to the turn-and-slip indicator. During the descending turn, the rate of turn and airspeed are maintained with cyclic control; rate of descent, with power; and trim, with pedals. Power is used to adjust the rate of descent only if the desired airspeed is exceeded by ± 5 knots. (The ± 5 knots is used for minor pitch correction during climbs and descents.) After 30 seconds, the aircraft will have turned approximately 90° and descended approximately 250 feet. If the instruments indicate other than the desired readings, the rate of
descent and/or turn should be adjusted as necessary. A further check can be made at the expiration of 45 seconds. Adjustments in the rate of descent and/or turn should again be made if necessary. Normally, the recovery should be started as the second hand reaches the original starting position (60 seconds). However, regardless of the time factor, a recovery should be made when the desired heading and altitude have been reached.

c. Errors common in descending turns include—
 (1) Failure to detect a need for a change in rate of turn or rate of descent.
 (2) Improper use of power.
 (3) Improper use of pedals.
 (4) Failure to recover from the turn with the proper heading and altitude.
 (5) Overcontrolling pitch and bank attitudes.

5-26. Unusual Attitudes and Recoveries

a. Any maneuver not required for normal instrument flight is an unusual attitude and may be caused by turbulence, vertigo, instrument failure, or carelessness in cross-checking. Due to the inherent instability of the helicopter, unusual attitudes can be extremely critical. As soon as an unusual attitude is detected, make a recovery to level flight as quickly as possible with a minimum loss of altitude.

b. The recovery from an unusual attitude requires an immediate analysis of what the helicopter is doing and how to return it to normal flight as quickly as possible with a minimum loss of altitude.

c. To recover from an unusual attitude, correct bank and pitch and adjust power as necessary. All components are changed almost simultaneously with little lead of one over the other; e.g., if the aircraft is in a steep climbing turn or descending turn, correct bank, pitch, and power simultaneously. The bank attitude is corrected with reference to the turn-and-slip indicator (or attitude

Figure 5-13. Climbing turns.
indicator if available). Pitch attitude is corrected with reference to the altimeter, airspeed indicator, vertical speed indicator, and the attitude indicator (if available). Adjust power with reference to the power control instruments, and the airspeed indicator.

d. Since the displacement of controls used in recoveries from unusual attitudes may be greater than those for normal flight, care must be taken in making adjustments as straight-and-level flight is approached. The instruments must be observed closely to avoid overcontrolling.

e. Errors common to recoveries from unusual attitudes include—

 (1) Failure to make power correction.
 (2) Failure to correct pitch attitude.
 (3) Failure to correct bank attitude.
 (4) Overcontrolling pitch and bank attitude.
 (5) Excessive loss of altitude.
 (6) Overcontrolling power.

5-27. Autorotations

An autorotation is a descent without power in a helicopter. In the event of power failure or other emergencies requiring autorotation, prompt corrective action must be taken to insure positive control of the aircraft.

a. To enter autorotation, reduce collective pitch smoothly to maintain safe rotor rpm, and trim pedals to assure coordinated flight. The attitude of the aircraft should be level and the airspeed adjusted to the autorotative speed.

b. Practice instrument autorotations must be terminated with a power recovery. Power recoveries will be accomplished in accordance with the appropriate operator's manual.

c. As proficiency is gained, autorotations and forced landings are practiced without prior warning.

Figure 5-14. Descending turns.
d. Errors common in autorotations and corrective actions include—

 (1) Skidding and slipping on entry due to improper pedal trim.

 (2) Improper airspeed or airspeed variation due to improper pitch attitude.

 (3) Failure to maintain proper rotor rpm due to improper cross-check on rpm.

5–28. Accelerations and Decelerations

An acceleration or a deceleration is a proficiency maneuver that can be practiced during straight-and-level flight.

a. To practice this maneuver, the airspeed should be at normal cruise. Power changes should be executed in coordination with all available attitude instruments. Power changes of approximately 1 torque pound above and below cruise torque setting will result in an approximate 5-knot change in airspeed. Changes in attitude and trim control must be made throughout the maneuver to maintain altitude and desired heading.

b. To accelerate from normal cruise to high cruise, increase power 2 pounds of torque above that required to maintain high cruise, adjusting attitude as necessary to maintain level flight; then as the desired airspeed is approached, reduce power to high cruise power setting, adjusting attitude to maintain level flight.

c. To decelerate from high cruise to low cruise, reduce power 2 pounds of torque below that required to maintain low cruise and adjust attitude as necessary to maintain level flight; then as the desired airspeed is approached, increase power to low cruise setting and adjust attitude to maintain appropriate altitude.

d. To accelerate from low cruise to normal cruise, increase power 2 pounds of torque above that required to maintain normal cruise and adjust attitude to maintain appropriate altitude; then as the desired airspeed is approached, reduce power to normal cruise power setting and adjust attitude to maintain the desired altitude.

e. Errors common in acceleration and decelerations include—

 (1) Improper use of power.

 (2) Overcontrolling pitch attitude.

 (3) Failure to maintain heading.

 (4) Failure to maintain altitude.

 (5) Overcontrolling power.

 (6) Failure to maintain proper turn.

 (7) Improper pedal adjustment.

5–29. Hydraulic Systems Failure

Hydraulic systems failure is the loss of hydraulic pressure to the control system and is evidenced by stiffness and feedback in the controls, and a warning light.

a. In the event of hydraulic system failure—

 (1) Maintain aircraft control.

 (2) Adjust airspeed as necessary to obtain the most comfortable controllability.

 (3) Complete emergency procedure in accordance with the appropriate operator's manual.

b. Hydraulic failure is simulated by deactivating the hydraulic system. To practice hydraulic failure—

 (1) The instructor deactivates the hydraulic system, with prior warning to the individual.

 (2) Procedures set forth in a above are followed.

c. Errors common to hydraulic failure and corrective actions include—

 (1) Failure to adjust to a comfortable airspeed: emphasize a comfortable airspeed as a control technique.

 (2) Failure to maintain desired heading and altitude: review attitude control and practice hydraulics-off flight.

 (3) Failure to apply correct checklist procedure.
CHAPTER 6

PROFICIENCY MANEUVERS (FIXED WING)

6-1. General

The maneuvers described in this chapter are practiced primarily to develop proficiency in power, pitch attitude, and bank attitude control, and to increase the aviator's speed in cross-checking.

6-2. Vertical S and S-1

a. The vertical S (fig 6-1) consists of a series of climbs and descents. Throughout the maneuver, constant airspeed and heading are maintained. All climbs and descents are made at a constant rate as shown on the vertical speed indicator, and the reversing of vertical direction is made at specified altitudes. The time element is eliminated from the maneuver. The vertical S is entered as in a constant rate climb or descent. During the climb or descent, pitch attitude is adjusted on the attitude indicator to control the vertical speed, and airspeed is controlled with power. The heading indicator and attitude indicator are referred to for bank control throughout the maneuver. The change from a climb to a descent requires the same amount of lead on altitude that is used in a leveloff. Power must be smoothly adjusted to the approximate setting for the desired descending airspeed at the same time that the pitch attitude is being adjusted to the approximate position for the desired rate of descent. The same control technique is used in changing from a descent to a climb. The frequency of reversing the vertical direction depends upon the type of aircraft used.

b. The climbs and descents will be at the same indicated rate as the amount of altitude to be gained or lost. Normally, in aircraft with a low rate-of-climb capability, the maneuver is accomplished by climbing 500 feet, descending 500 feet; climbing 400 feet, descending 400 feet; climbing 300 feet, descending 300 feet; and, climbing 200 feet, descending 200 feet. This completes the maneuver. High performance aircraft may accomplish the maneuver by changing altitudes of 1,000, 800, 600, and 400 feet, with corresponding rates of climb and descent. Trim control is especially important because of the constant changes in attitude and power throughout the maneuver. The frequency of these changes requires a rapid cross-check for precise control of the aircraft.

c. The vertical S-1 (fig 6-2) is a combination of the vertical S and standard rate turns of 360°. Each turn is started in a climb and ends in a descent. The direction of the bank is reversed after each descent.

d. Errors common to the vertical S and S-1 maneuvers include—

1. Failure to use the airspeed indicator properly for pitch control when changing the vertical direction.

2. Overcontrol of pitch attitude when climbing and descending (indicated by excessive movement of the vertical speed indicator).

3. Failure to use the proper altitude lead when reversing the vertical direction.

4. Failure to correct sufficiently for torque when power is changed.

6-3. Pattern A

Pattern A (fig 6-3) is designed to give practice in maintaining straight-and-level flight and performing timed turns at definite time intervals. It is a combination of the procedures that will be used in the advanced phase of instrument training. As such, it is an invaluable experience in planning, precision timing, maintaining orientation, holding, performing procedure turns, and making approaches.

a. Prerequisites for successful performance of pattern A are—

Figure 6-1. Vertical S.
Figure 6-2. Vertical S-1.

(1) Proficiency in performing timed turns without the use of the attitude and heading indicators. Timing should begin when the second hand is on the 12-o’clock (preferable) or 6-o’clock position. All legs are 2 minutes long except the first, which is 1 minute. All turns are 3°-per-second timed turns. Timing for all turns begins and ends on a cardinal point on the clock. Timing for each leg of the pattern begins at the same moment that pressure is applied on the controls to roll the aircraft out of the preceding turn, even though the aircraft is still turning and is not on the desired heading.

(2) Understanding of the proper use of the magnetic compass and awareness of its errors. The pattern may be started on any heading; however, initial practice should be accomplished on cardinal headings for simplification.

(3) Familiarity with the pattern and knowledge of the power settings for the different airspeeds used.

b. When the aircraft is in straight flight and a few seconds have been allowed for the magnetic compass to stop oscillating, the compass heading is noted. If the aircraft is not on the correct compass heading, a correction is made toward the desired heading before changing the airspeed. On headings of north and south, this correction must be a timed turn; however, in the vicinity of east and west, a shallow bank and turn directly to the heading is possible since there is no turning error on headings of east and west.

c. The airspeed should be changed immediately if a correction of heading is not required. When the turn-and-slip indicator is the only bank instrument available, it must be observed closely at all times. The magnetic compass can be used only to determine the accuracy of the heading. The altimeter is used with the vertical speed indicator to maintain precise pitch control. A rapid and efficient cross-check is required during changes of airspeed, so that corrections can be applied immediately.

d. Errors common in the pattern A maneuver include—

(1) Failure to control bank properly in turns.
(2) Failure to maintain heading and altitude.
(3) Attempting to use the compass as a bank instrument.
(4) Poor bank control during changes in airspeed.
(5) Failure to make allowances for an incorrectly calibrated turn needle during the timed turns.

6–4. Pattern B

a. Pattern B (fig 6-4) is designed to give further practice in the procedures used during the advanced phase and to combine most of the maneuvers previously performed. It is essentially the same maneuver as pattern A with the following exceptions:

(1) All available instruments are used.
(2) The airspeed is changed during the turns.
(3) A prelanding check is completed on the fourth leg.
(4) Descents at 500 fpm are made during the maneuver.
(5) The airspeed is maintained following the final turn, and a descent of 500 fpm is established, followed by a go-around after descending 1,000 feet.

b. The timing is consecutive since the time for each leg starts when the time for the previous turn has elapsed, regardless of the bank attitude of the aircraft. Timing is simplified if the pattern is always started when the second hand of the clock indicates the 12-o’clock position. The pattern may be memorized; however, using a card will give practice that will be valuable in accomplishing advanced work. Planning should take place when flying straight and level on the legs. The
Figure 6-3. Pattern A.

START NORMAL CRUISE

CHANGE TO SLOW CRUISE

1 MINUTE

30 SEC.

2 MINUTES

END

CHANGE TO NORMAL CRUISE

CHANGE TO SLOW CRUISE

45 SEC.
pattern can be started on any heading, but initial practice should be done on cardinal headings.

c. Errors common in the pattern B maneuver include—
 (1) Failure to control rate of turn.
 (2) Failure to maintain heading and altitude.
 (3) Attempting to use the compass as a bank instrument.
 (4) Poor bank control during changes in airspeed.
7-1. Definition of Air Navigation

Air navigation is defined as the art of directing the aircraft along a desired course and determining its position along this course at any time. Such navigation may be by means of pilotage, dead reckoning, or radio aids, and includes those procedures which are used during instrument flight in directing the aircraft to a safe landing.

7-2. Scope

This discussion includes the following information:

- **a.** Basic concepts of air navigation and the use of the implements of air navigation which assist the Army aviator in planning and completing a flight by means of pilotage and/or dead reckoning.

- **b.** Employment of radio navigational aids in flight.

- **c.** Facilities and procedures peculiar to instrument approaches.
CHAPTER 8
BASIC CONCEPTS OF AIR NAVIGATION

Section I. THE EARTH IN SPACE

8—1. Shape
A perfect sphere is a body whose surface is at all points equidistant from a point within, called its center. Any straight line which passes from one side, through the center of the sphere, to the opposite side is called the diameter of the sphere. Although the Earth is actually a spheroid (being slightly flattened at the poles), for navigational purposes it is considered a perfect sphere.

8—2. Rotation
The diameter of the Earth, around which the spherical body rotates, is an imaginary straight line called the axis. The points formed by the intersection of the axis with the Earth's surface are the North and South Poles. Any point on the Earth's surface, except the North and South Poles, completes one rotation around the axis every 24 hours.

Figure 8—1. West to east rotation of the Earth and its revolution around the Sun.
8-3. Revolution
As the Earth rotates, it also revolves around the sun in an elliptical path (fig 8-1), completing one orbit each year.

8-4. Inclination.
The axis of the Earth is inclined approximately $23\frac{1}{2}^\circ$ from the perpendicular to its plane of revolution. This inclination is such that the North Pole points generally toward the North Star (Polaris).

Section II. MEASURING POSITION ON THE EARTH

8-5. Position Designated by Coordinates
To identify the location of a point on the surface of the Earth, a universal system of expressing geographical position without reference to physical features is a necessity. Such a system, known as a coordinate or grid system (fig 8-2), designates location or position and expresses angular magnitude with respect to two reference lines (meridians and parallels) which intersect at right angles. By reference to these lines, any point may be accurately located. This system of coordinates is formed by the intersecting of great and small circles (para 8-6a).

8-6. Circles on a Sphere
a. Great and Small Circles. The straight cut of a plane through a sphere forms a circle. If the cut passes through the center of the Earth, the circle formed is a great circle. This is the largest circle that can be cut from a sphere. Any other circle, regardless of size, is called a small circle, since the plane of a small circle does not pass through the center of the sphere and, hence, will not divide the sphere in half (fig 8-3).

b. Arcs and Their Measurement. Arcs are segments of circles and are measured in degrees, minutes, and seconds. A degree (°) is $1/360$ of the circumference of a circle; thus, if any circle is divided into 360 equal arcs, each arc is 1° in length, regardless of the size of the circle. A minute (') is $1/60$ of 1°, a second (") is $1/60$ of 1 minute.

c. The Central Angle. Straight lines drawn from each end of an arc to the center of a circle form an angle at the center called the central angle. Angles, like arcs, are measured in degrees, minutes, and seconds. The angle at the center of the circle contains the same number of degrees, minutes, and seconds as the arc which it subtends. Each line from the center of the circle to its periphery is a radius.

d. Angular and Linear Distances. The angular distance between any two points on a circle can be expressed in degrees, minutes, and seconds of arc. This distance is actually a measure of the central angle and is independent of the size of the circle. The angular distance depends upon that portion of the circle which separates the two points. For any given angle, the linear distance between two points on the circle (an arc, fig 8-4) varies with the size of the circle; i.e., with the length of the radius.

8-7. Reference Circles on the Earth
The axis of the Earth is the only distinctive, natural geometric line of the Earth. The North and South Poles are distinct points on the Earth and are used as central points for one set of reference circles known as parallels of latitude. The only great circle of this set of circles is the Equator (fig 8-2).

8-8. Equator
The Equator is a great circle located halfway between the North and South Poles and serves as a reference line for all parallels of latitude (fig 8-2). Since the poles are 180° apart, every point on the Equator is 90° from each pole. The plane of the Equator is at right angles to the Earth's axis and
THE EQUATOR IS A GREAT CIRCLE.

THE GREENWICH MERIDIAN IS A GREAT CIRCLE.

ANY CIRCLE THAT CUTS THE EARTH IN HALF IS A GREAT CIRCLE.

A PARALLEL IS NOT A GREAT CIRCLE.

Figure 8-8. Great and small circles.

divides the Earth into the Northern and Southern Hemispheres.

8—9. Parallels

Any small circle whose plane is parallel with the plane of the Equator is a parallel of latitude (fig 8-2). Every point on a given parallel is equidistant from the Equator, the poles, and any other parallel. The Equator and all parallels are concentric around the polar axis. An infinite number of parallels may be drawn; however, only a few are shown on the globe. A parallel on the Earth's surface is designated by its angular measurement north or south of the Equator; e.g., point A (fig 8-2) is on a parallel 29°45' north of the Equator.

8—10. Meridians

A great circle passing through both poles is called a **meridian of longitude** (fig 8-2). As with parallels, there may be an infinite number of meridians even though few are shown on the globe. The meridian passing through the observatory at Greenwich, England, has arbitrarily been selected as the reference or **prime meridian**. All other meridians are designated by their angular distance east or west of the prime meridian; e.g., point A (fig 8-2) is on a meridian 105°22' west of the Greenwich meridian.

8—11. Latitude and Longitude

a. **Latitude.** The latitude of a point on the surface of the Earth is its angular measurement north or south of the Equator measured on the plane of the meridian passing through the point. Latitudes range from 0° at the Equator to 90° north or south at the poles.

b. **Longitude.** The longitude of a point is its angular measurement east or west of the prime meridian.

Figure 8-4. Angular and linear distances.
(Greenwich) meridian, measured on the plane of the Equator or of a parallel. Longitude ranges from 0° at the prime meridian to 180° at the meridian diametrically opposite the prime meridian (halfway around the world at the international date line).

c. Parallels of Latitude and Meridians of Longitude. Naming the parallel and meridian which passes through a point is essentially the same as giving its coordinates. Each parallel of latitude is designated according to its angular measurement north or south from the Equator and each meridian of longitude is designated according to its angular measurement east or west of the prime meridian. A meridian of longitude is a line, but longitude is an angle; a parallel of latitude is a line, but latitude is an angle. In giving the coordinates of a point, latitude is given first, followed by the longitude; for example, point A (fig 8-2) is positioned at latitude 29°45'N, longitude 105°22'W.

Section III. MEASURING DIRECTION ON THE EARTH

8—12. General

In air navigation, directions are indicated both by use of cardinal points (north, east, south, west) or intercardinal points (northeast, southeast, southwest, etc.) of the compass and by numbers (degrees) (fig 8-5).

8—13. Measuring Direction

The compass rose (fig 8-5) divides the horizon (fig 8-6) into 360 parts or degrees. Starting with north as 0° and continuing clockwise through east, south, and west, directions are expressed in degrees measured from north (0°). North may be expressed as 360°. East is 090°, and west is 270°. Figure 8-7 shows point B in a direction of 045° (northeast) and point C in a direction of 270° (west) of aircraft A. Aircraft A is headed in a direction of 120°. A line by itself does not indicate a single direction; arrows or labels along the line are used to indicate the intended direction. Note that the direction of C from A (270°) is not the same as the direction of C to A (090°), even though drawn as one line. The direction of a line is measured from its point of origin and labeled by the angle the line forms with an intersecting meridian. In figure 8-7, the direction from A is measured from point A. If the meridians are drawn as parallel lines, the direction of a straight line may be measured at any point along the line. In measuring the direction from C to A (A from C), measurement is made with reference to the mean meridian (DE) of points A and C because the meridians in figure 8-7 are not parallel; i.e., they converge toward the north as do the meridians on most aerial navigation charts.

8—14. Course

The direction which an aircraft is to fly to reach a given destination is the course to that destination.
Figure 8-7. Measure of direction.

Therefore, the course from A to C (fig 8-7) is 270°.

8-15. Rhumb Line (Definition)

The rhumb line is a line of constant direction that crosses successive meridians at the same oblique angle (fig 8-8). Parallels of latitude, the Equator, and meridians are often called rhumb lines even though they do not fully conform with the definition. A true rhumb line, if continued, will spiral toward the poles, never quite reaching either of them. Such a spiral is called a loxodromic curve (fig 8-8).

Figure 8-8. Rhumb line, loxodromic curve, and great circle.
8–16. Units of Measurement

a. Distance. The length of a line joining two points is its distance. The most common unit for measuring distance in navigation is the mile. Since the word mile does not define an exact distance, it is important to specify the type of mile.

b. Statute Mile. In the United States, 1 mile is defined by statute as being 1,760 yards or 5,280 feet. This is called a US statute mile. There are some differences in the legal definition in other countries. With the growth of cross-country flying and the development of better aviation charts, the statute mile is rapidly becoming obsolete. Aviators will, however, encounter statute mile indications on some charts, plotters, and airspeed indicators.

c. Nautical Mile. Military airmen use the nautical mile as a unit of distance. The nautical mile (6,076.1 feet) is equivalent to 1 minute of latitude, or approximately 1.15 statute miles. A statute mile is approximately 0.87 nautical miles.

Note. The only requirement that nautical miles be used in air navigation pertains to filing flight plans. However, nautical miles are more convenient since distances on published aeronautical charts are shown in nautical miles, windspeeds are reported in nautical miles per hour (knots), and most airspeed indicators are calibrated in nautical units. If navigational data contains mixed units, convert all measurements either to nautical or to statute miles.

8–17. Great Circle Distance

The shortest distance between two points on the surface of the Earth lies along any minor arc of a great circle passing through both points. A minor arc of the great circle between two points is more nearly a straight line than is the arc of any other circle which can be drawn between these points (fig. 8–8).
CHAPTER 9
NAVIGATION CHARTS

Section I. CHART PROJECTIONS

9–1. General

An air navigation chart is a diagrammatic representation of the Earth's surface. The chart shows elevation; cities and towns; principal highways and railroads; oceans, lakes, and rivers; radio aids to navigation; danger areas; and other features useful to the navigator.

9–2. Scale

a. General. The scale of the chart is the ratio between the distance on a chart and the distance it represents on the Earth. A chart showing the entire surface of the Earth is drawn to small scale for convenient size. A chart covering a small area and much detail is drawn to a larger scale.

b. Types of Scales. The scale of a chart may be expressed simply, such as "1 inch equals 30 miles." This means that a ground distance 30 miles long is 1 inch long on the chart. On aeronautical charts, the scale is shown in representative fractions and/or graphic scales.

(1) Representative fraction. A scale may be given as a representative fraction such as 1:500,000 or 1/500,000. This means that 1 unit on the chart represents 500,000 units of the same dimension on the Earth. For example, 1 inch on a chart may represent 500,000 inches on the Earth or approximately 6.9 nautical or 8 statute miles.

(2) Graphic scale. A graphic scale (fig 9–1) shows the distance on a chart labeled in terms of the actual distance it represents on the Earth. The distance between parallels of latitude is a convenient graphic scale since 1° of latitude always equals 60 nautical miles. Meridians are often divided into minutes of latitude, with each division representing 1 nautical mile.

9–3. Distortion

Distortion is the misrepresentation of direction, shape, and relative size of features on the Earth's surface which occurs when the Earth's round surface is projected onto a flat chart surface. A globe is the only means of representing the entire surface of the Earth without distortion.

a. Developable Surfaces. A developable surface (fig 9–2) is a curved surface such as a plane, cylinder, or cone that can be flattened without tearing, stretching, or wrinkling.

b. Nondevelopable Surfaces. The surface of a sphere or spheroid is nondevelopable because no part of it can be laid out flat without distortion. This can be understood by attempting to flatten half of an orange peel. However, a small piece of orange peel, because it is nearly flat, can be flattened with little stretching or tearing. Likewise, a small area of the Earth's surface which is nearly flat can be represented on a flat surface with little distortion (fig 9–2). Distortion becomes a serious problem in charting large areas and can never be completely eliminated. It can, however, be controlled and systematized; i.e., a chart for a particular purpose can be drawn so as to minimize the type of distortion which is most detrimental.

9–4. Chart characteristics

Each type of chart has distinctive features which make it preferable for certain uses; no one chart is best for all uses. If it were possible to construct a perfect chart, the chart would have the following: true shape of all physical features, correct angular relationship (conformality), representation of areas in their correct relative proportions, true scale value for measuring distances, and great circles and rhumb lines represented as straight lines. It is possible to obtain one and sometimes more than one of the above properties in any one projection, but it is impossible to retain all of them. For example, a chart cannot be both conformal and equal area. Desirable but secondary

KILOMETERS	10	20	30	40
Nautical Miles 10	0	10	20	
Statute Miles 10	0	10	20	

Figure 9–1. Graphic scale.
Figure 9-2. Developable and nondevelopable surfaces.
9–5. The Graticule

a. General. Exact coordinates of any point on the Earth may be found by astronomical means. With reference to control points established in this manner, the exact location of nearby features may be found by geographic survey or by aerial photography. A chart can then be made by drawing the established geographical features on a framework of meridians and parallels known as a graticule (fig 9–3). Once the graticule is drawn, features may be plotted in their correct positions with references to meridians and parallels.

b. Form and Size. The form of the graticule determines the general characteristics and appearance of the chart; its size determines the scale. Since meridians and parallels cannot be shown on a plane surface exactly as they would appear on a sphere, there is no perfect method of constructing the graticule. For example, the meridians and parallels may be shown as straight lines, as variously curved lines, or some as straight and some as curved lines; they may be spaced in various ways and may intersect at various angles.

9–6. Projection

a. Definition. The method of representing all or part of the surface of a sphere or spheroid on a plane surface is known as projection. The actual projection of a graticule is accomplished by application of mathematical formulas.

b. Classifications. Projections are classified primarily as to the type of developable surface (fig 9–2) to which the spherical or spheroidal surface is transferred. They are sometimes further classified as to whether the projection (but not necessarily the chart made by it) is centered on the Equator (equatorial), a pole (polar), or some point or line between the Equator and the poles (oblique) or tangent at a meridional (transverse). Some cartographers drop the term oblique and call all such projections transverse. Chart projections most commonly used in air navigation are the Lambert conical, the Mercator cylindrical, and the polar stereographic, all three of which are conformal projections (para 9–7d). (Stereography is the art of representing forms of the solid bodies on a plane surface.)

c. Purpose of Charts. Charts are used in navigation principally for two purposes: (1) chart reading and (2) plotting and measuring. Chart reading is the location of one's position by identification of landmarks (para 10–1). Plotting refers to establishment of points and lines on a chart. Measuring means measurement of direction and distance on a chart (para 11–1).

9–7. Lambert Conformal Projection

a. Appearance of the Graticule. The Lambert conformal projection (Lambert chart) is a conic projection using the cone for a developable surface. All meridians are straight lines meeting at the apex of the cone. All parallels are concentric circles, the center of which is also the apex of the cone. Meridians and parallels intersect at right angles and the angle formed by any two lines is correctly represented (fig 9–3).

b. Standard Parallels. The cone intersects the sphere at two parallels (fig 9–4). The parallels are known as standard parallels for the area to be represented. In general, for equal distribution of scale error, the standard parallels are chosen at one-sixth and five-sixths of the total length of that portion of the meridian to be represented.

c. Accuracy. Along the two standard parallels, areas are represented in true scale. Between the standard parallels, the scale will be too small; beyond them, too large. For practical purposes, the scale can be considered constant for a large scale chart of a small area (fig 9–5). Accuracy is greatest for charts of predominantly east-west dimensions.

d. Conformality. The Lambert projection is conformal because the scale is practically uniform in all directions about any point, and the angles formed by parallels and meridians are shown
correctly. Because of the scale uniformity, areas retain true shape (fig 9-6).

e. Great Circle vs. Straight Line. Any straight line on a Lambert conformal conic chart is nearly a great circle (fig 9-7). In the distance of 2,572 statute miles between San Francisco and New York, a great circle and a straight line connecting them on a Lambert chart are only 91/2 miles apart at midlongitude. For shorter distances, the difference is negligible. For all practical purposes, if a flight is only a few hundred miles long, a straight line may be considered a segment of a great circle.

f. Rhumb Line on a Lambert Chart. A rhumb line on a Lambert chart is a curved line that cuts all meridians at the same angle. The closer its direction is to east-west, the more a rhumb line departs from a straight line. Over distances of 100 to 200 miles, in the latitude of the United States, a rhumb line departs little from a straight line; but over long distances, the difference becomes large. Between San Francisco and New York, the length of a rhumb line differs from a straight line by about 170 miles. An accurate rhumb line cannot be drawn on a Lambert chart, but it can be approximated by a series of short straight lines.

g. Use. The constant scale and conformity of Lambert charts place them among the best charts for air navigation. They are suitable for navigation using long-distance radio bearings and are superior to Mercator charts (para 9-8) for problems involving long distances and true directions. However, for plotting positions and measuring rhumb line directions, they are inferior to Mercator charts.
9–8. Mercator Projection

a. Description. The Mercator chart is a cylindrical projection. Meridians appear as straight lines which are equidistant and parallel. Parallels of latitude are parallel to each other and perpendicular to the meridians. The distance between parallels increases with an increase in latitude. Since the meridians are parallel to each other, the east-west scale is increased with an increase in latitude. Consequently, parallels must be placed in such a manner that the north-south scale increases proportionately. As a result, the scale at any point is constant in all directions. Since meridians and parallels intersect at right angles as on the Earth, all angles are shown correctly. Every rhumb line appears as a straight line, and every straight line is constant in direction. The Equator and the meridians are the only great circles which appear as straight lines; all other great circles appear as curved lines (fig 9–8).

b. Use, Advantages, Disadvantages. The Mercator chart is used in air navigation only for long-range overwater flying. Its greatest advantage is that a rhumb line on the chart is a straight line. Plotting is easier because of the rectangular graticule. On the other hand, long-range radio bearings cannot be plotted without special corrections. Because of the expanding scale of this chart, distances are difficult to measure.

9–9. Polar Stereographic Projection

a. General. The polar stereographic projection (fig 9–9) is based on a plane, tangent at the pole, with the point of projection at the opposite pole. Meridians are straight lines converging at the pole. Parallels are concentric circles with the pole as their common center. For the world aeronautical chart (WAC) series (para 9–11), the polar stereographic chart is modified by using a secant plane, a line intersecting a curve at two or more points (fig 9–10). This modification makes the polar stereographic and Lambert charts the same scale at 80° latitude. The polar stereographic chart becomes true scale at 80°14' since the secant plane intersects the Earth's surface at that latitude.
with the scale decreasing as the pole is approached. The polar stereographic chart is the best chart for navigation in polar regions.

b. Area of Coverage. A polar stereographic chart may include a whole hemisphere; however, a chart used for air navigation will not extend more than 20° or 30° from the pole.

c. Scale. Since the interval between parallels increases with distance from the pole, the north-south scale also increases away from the pole. The east-west scale increases in the same proportion, so that at any point the scale is constant in all directions. For all practical purposes, the scale is constant within the limits of a navigational chart.

d. Angles. All angles are correctly shown since meridians appear as radii of circles representing parallels, and meridians and parallels intersect at 90° angles on the chart.

e. Straight Lines vs. Rhumb Lines vs. Great Circles. Meridians, which are great circles, appear as straight lines; hence, any great circle passing through the center of the chart appears as a straight line. Other great circles appear as slightly curved; however, the closer they are to center, the straighter they appear. Within the limits of a navigational chart, a great circle is shown as a straight line and rhumb lines appear as curved lines.

Section II. AERONAUTICAL CHARTS

9-10. Sectional Aeronautical Charts

a. General. Sectional aeronautical charts are Lambert conformal charts published by the National Ocean Survey, National Oceanic and Atmospheric Administration, United States Department of Commerce. The scale is 1:500,000 (1 inch equals approximately 6.9 nautical miles or about 8 statute miles). These charts are intended primarily for flights of short duration using pilotage (visual flight) but are suitable for other forms of navigation. The large scale of the sectional chart permits information to be included in great detail. A listing of aeronautical symbols and other useful information is printed on the inside and outside borders of the chart. The effective date and the date the chart will become obsolete are printed on the front or title page (b through f below list some of the features of these charts).

b. Terrain. The portrayal of terrain on the charts will emphasize land forms by relief shading and will also include contours, elevation tints and a generous depiction of a number of spot elevations. The maximum terrain elevation within each 30' longitude and 30' latitude area will be dramatically shown in large size type.

c. Cultural. Cultural features, such as railroads and major roads and, in sparsely settled areas, even dirt roads or paths may be shown. Cities and towns, mines, lookout towers, and many other good landmarks are indicated by symbols.

d. Aeronautical. Aeronautical features such as airports, airways, navigation radio facilities, etc., are shown on these charts. Printed near each airport is certain information concerning that airport.

e. Area Charts. There are 37 charts, printed back to back, covering the United States. Each is designated by name and series (e.g., New Orleans—Sectional Aeronautical Chart). Each chart covers an area containing approximately 4° of latitude and from 6° to 8° of longitude. Overlapping coverage on adjoining charts will be provided on the north and east sides to facilitate transition between charts. Charts are printed to the edge of the sheet, eliminating the need for cutting and folding of border areas when matching data on adjacent charts is required.

f. Fold. Each chart will be folded to convenient dimensions of 5 x 10 3/16 inches to provide for easy handling and stowage. The unique fold is designed to provide rapid switch over from front to back, insuring availability of navigation information for continuous and uninterrupted flight.

9-11. World Aeronautical Chart

The world aeronautical chart (WAC) (scale 1:1,000,000) is published by the National Ocean Survey, National Oceanic and Atmospheric Administration, United States Department of Commerce. There is no DOD requirement for civil editions of domestic WAC’s. DOD requirements are being met by operational navigation charts (ONC).

9-12. Photomaps

Photomaps prepared by the Army Map Service, Corps of Engineers, are used for air navigation over small areas. These maps may be constructed by using a single photomap or a mosaic of several photomaps. They may be printed on the reverse side of tactical maps. The scales are 1:25,000, 1:50,000, and 1:100,000. Meridians and parallels are indicated on the margin of the map. Positions
are located by reference to a system of horizontal and vertical grid lines.

9-13. Tactical Pilotage Charts (TPC)

These charts are produced to satisfy most DOD requirements for 1:500,000-scale charts of the United States. They are used for detailed preflight planning; mission analysis; low-to-medium altitude navigation; and low level, high speed navigation. Sectional charts of comparable coverage are produced by the National Ocean Survey (para 9-10) to satisfy civil needs. There is a recognized US Army requirement for the civil edition for use in low level visual pilotage.

9-14. Operational Navigation Charts (ONC)

These charts use the Lambert conformal projection with a scale of 1:1,000,000. They are designed primarily for preflight planning and medium altitude en route navigation by dead reckoning; visual pilotage; and celestial, radar, and other electronic techniques. These charts replace world aeronautical charts (WAC) in areas of duplicate coverage.
CHAPTER 10
CHART READING, PILOTAGE, AND NAVIGATION FOR TERRAIN FLYING

Section I. CHART READING AND PILOTAGE

10-1. General

Chart reading is the identification of landmarks with their representation on a chart. The degree of success in navigating by observation of landmarks (pilotage) depends upon the aviator's proficiency in chart interpretations.

10-2. Accuracy of Charts

The latest revised aeronautical charts of the United States are accurate and complete. Charts of other parts of the world may not be as accurate or complete due to lack of information or utility. Since aeronautical charts undergo repeated revision, the chart used by the aviator should be the latest published. Aeronautical charts are listed in current navigation publications.

10-3. Chart Content

Although charts do not picture all details, those particular features useful to the aviator are emphasized, including those features which have the most distinctive appearance from the air. For emphasis, many features are shown out of proportion to their true size, though centered in their correct positions. For example, the line representing a road on a sectional chart may appear to be a quarter of a mile wide according to the scale of the chart. Radio stations are prominently shown even though they are inconspicuous from the air. Many lines, such as meridians, parallels, isogonics, Airways, and contours take up space on the chart even though they are invisible on the ground.

10-4. Symbols

Since a chart is a diagram, it consists of symbols which do not necessarily resemble the shape or appearance of the objects they represent. Skill in chart reading depends on a complete understanding and interpretation of these symbols.

a. Relief.

(1) Aeronautical charts show elevation and inequalities of the Earth's surface, which are known collectively as relief. Mountains are good landmarks but are also a hazard to flying. Elevations of the highest peaks and other significant spot elevations are shown in italics.

(2) Most charts represent relief by means of contours (lines connecting points of equal elevation (fig 10-1). The shoreline of the ocean might be thought of as the 0-foot contour, since every point on it is at sea level. The 1,000-foot contour is a line connecting all points that are 1,000 feet above the average (mean) sea level. On a steep slope, contours are close together; on a gentle slope, they are farther apart.

(3) On sectional charts, contours are brown lines, each line labeled with the elevation it represents (fig 10-1). Contour intervals vary from chart to chart. On charts where only low elevations exist, the contours are at 500-foot intervals; where high elevations exist, the contours are 1,000 feet apart. On charts where unexplored areas are shown, mountains may be indicated by hachures or shading, with elevations of peaks shown as accurately as they are known.

(4) Hachures may be used on contour charts to show prominent hills or buttes too small to depict by contours. The relief shown by contours is further emphasized on sectional charts by a gradient system of coloring. The darker colored mountain peaks stand out conspicuously. Other aeronautical charts have different color schemes, or show only contour lines. The color shading block of the legend indicates elevation levels on the chart.

b. Cultural. Cultural symbols represent man-made features. Cities and towns are shown by several methods. A circle or square denotes a small town, but does not show the shape of the town. The town can be recognized from the air only by its position relative to nearby features such as roads, railroads, rivers, streams, etc. A city is represented according to its shape and size. On detailed sectional charts many conspicuous roads are omitted, especially in congested areas. All railroads are shown on aeronautical charts; normally they are more permanent than automobile roads and are more likely to be accurately depicted. A chart may or may not show a bridge where a road or railroad crosses a body of water. Many cultural features, such as racetracks, oil

10-1
fields, tank farms, and ranger stations are shown by special symbols.

Note. There are no standard symbols for many conspicuous features such as: smokestacks, water towers, monuments, and prominent buildings. These are often indicated by brief descriptive notes and with a dot showing the location.

c. Aeronautical Information. The sectional charts have aeronautical information printed on both sides of one edge and at the bottom of one side. This concerns aerodromes, radio aids to navigation and communication, airspace information, obstructions, and miscellaneous information.

d. Water and Forest. Bodies of water are valuable to the navigator because they are relatively permanent and easily seen from the air. Conventionally, water is shown in blue. European charts show forest areas in green; on charts of the United States, forests are not shown.

10–5. Checkpoints (Daylight Hours)

a. A landmark used to fix the aircraft’s position is called a checkpoint. A checkpoint must be a unique feature, or group of features, in a given area. The value of the type of checkpoint will vary with the geographical and cultural features of an area. In open areas or farm country, any town, railroad, or highway can be used for a checkpoint. In more densely populated areas, minor features such as roads and small towns are difficult to distinguish. Important highways, large towns with distinctive shapes, or towns near lakes or rivers are easily identified. In forested areas, swaths cut for pipelines and powerlines are easily traced. In mountainous areas, mines, ranger stations, prominent peaks, passes, and gorges can be used. In a desert, where checkpoints are few, minor features may be satisfactory checkpoints.

b. If there is any uncertainty about the position, every possible detail should be checked before identifying a checkpoint. The aviator may have to check back and forth from chart to ground to compare the angles at which roads or railroads leave a town, the position of bridges and intersections, or bends in streams and roads. Because the chart shows only significant details, it is essential
<table>
<thead>
<tr>
<th>CONDITIONS</th>
<th>GOOD CHECKPOINTS</th>
<th>POOR CHECKPOINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOUNTAINOUS AREAS</td>
<td>Prominent peaks, cuts and passes, gorges. General profile of ranges, transmission lines, railroads, large bridges over gorges, highways, lookout stations. Tunnel openings and mines. Radio Aids.</td>
<td>Smaller peaks and ridges, similar in size and shape.</td>
</tr>
<tr>
<td>COASTAL AREAS</td>
<td>Coastline with unusual features. Lighthouses, marker buoys, towns and cities, structures. Radio Aids.</td>
<td>General rolling coastline with no distinguishing points.</td>
</tr>
<tr>
<td>SEASONAL CHANGES</td>
<td>Dry river beds if they contrast with surrounding terrain. Dry lakes.</td>
<td>Open country and frozen lakes in winter unless in forested areas. Small lakes and rivers in arid sections of country - in summer - when they may dry up. Lakes (small) in wet seasons in lake areas, where ponds may form by surface waters.</td>
</tr>
<tr>
<td>HEAVILY POPULATED AREAS</td>
<td>Large cities with definite shape. Small cities with some outstanding check point: river, lake, structure, easy to identify from others. Radio aids, prominent structures, railroad yards, underpasses, rivers and lakes. Race tracks and stadia, grain elevators.</td>
<td>Small cities and towns, close together with no definite shape on chart. Small cities or towns with no outstanding check points to identify them from others. Regular highways and roads, single railroads, transmission lines.</td>
</tr>
<tr>
<td>OPEN AREAS FARM COUNTRY</td>
<td>Any city, town, or village with identifying structures or prominent terrain features adjacent. Prominent paved highways, large railroads, prominent structures, race tracks, farmlands, factories, bridges, and underpasses. Lakes, rivers, general contour of terrain; coastlines, mountains, and ridges where they are distinctive. Radio Aids.</td>
<td>Farms, small villages rather close together, and with no distinguishing characteristics. Single railroads, transmission lines and roads through farming country. Small lakes and streams in sections of country where such are prevalent, ordinary hills in rolling terrain.</td>
</tr>
<tr>
<td>FORESTED AREAS</td>
<td>Transmission lines and railroad right-of-ways. Roads and highways, cities, towns and villages, forest lookout towers, farms. Rivers, lakes, marked terrain features, ridges, mountains, clearings, open valleys. Radio Aids.</td>
<td>Trails and small roads without cleared right-of-ways. Extended forest areas with few breaks or outstanding characteristics of terrain.</td>
</tr>
</tbody>
</table>

Figure 10-2. Good and poor checkpoints.
that the aviator select reliable features on the chart to compare with features on the ground. Figure 10-2 shows the characteristics of good and poor checkpoints.

10–6. Estimating Distance

Ground distance can be estimated by comparison with the known distance between two other points measured on the chart.

10–7. Appearance of the Terrain

a. Effects of the Sun. When the Sun is low, long shadows cause strong terrain contrasts and emphasize relief. At noon, or when the Sun is obscured, the absence of shadows causes the terrain to appear flat.

b. Obstructions to Visibility. Smoke, haze, and dust reduce visibility and often restrict observation of the terrain to the area directly beneath the aircraft. Clouds below the aircraft may block the ground view completely.

c. Seasonal Changes. Snow on the ground may conceal a landmark. The shape and size of lakes, rivers, and ponds often change with the seasons, especially in low, flat country.

d. Low Level Flight. When flying at low levels, only small areas of the terrain can be seen. Because of the oblique angle of sight, apparent object depth is increased and relief detail is pronounced. The ground appears to move rapidly, and only brief glimpses of checkpoints are possible.

e. High Altitude Flight. From high altitudes the ground appears to move slowly, and the aviator has difficulty determining the exact time of checkpoint passage. When visibility is good, a large area can be seen, distances appear to contract, and the terrain looks flat with little detail.

10–8. Night Pilotage

a. General. During hours of darkness, an unlighted landmark may be difficult or even impossible to see, and lights can be very confusing because they appear to be closer than they really are. Stars near the horizon may be confused with lighted landmarks. Objects can be seen more easily at night by looking at them from the side of the eye. Staring directly at a light during night flight may impair night vision and cause vertigo and disorientation.

b. Unlighted Landmarks. In moonlight and occasionally on moonless nights, some of the more prominent unlighted landmarks such as coastlines, lakes, and rivers are visible from the air. Reflected moonlight causes a stream or lake to stand out brightly for a moment; however, this view may be too brief to permit recognition. By close observation, roads and railroads may be seen after the eyes have become accustomed to darkness.

c. Lighted Landmarks. Cities and large towns are usually well-lighted and are more visible at night than in the daytime. They can often be identified by their distinctive shapes and frequently can be seen at great distances, often appearing closer than they actually are. Smaller towns that are darkened early in the evening are hard to see and difficult to recognize. Busy highways are discernible because of automobile headlights, especially in the early hours of darkness.

10–9. Chart Reading in Flight

a. Preparation on the Ground. Proper ground preparation for navigation will save much time and map searching in flight. The course line should be drawn so that a quick glance at the chart will give an indication of the aircraft’s location with respect to the desired course. If both departure and destination are on the same chart, the course line is drawn along a straight edge between them. If they do not appear on the same chart, the aeronautical planning chart may be used to determine the principal points over which the flight will proceed. The course line is then drawn on each of the charts being used. The total distance should be measured. If the course line is marked off in increments (for example) of 20 nautical miles, the trouble of unfolding the chart and measuring distance while in flight is avoided.

Note. If aircraft cockpit lights are red, a red pencil mark on maps is invisible at night.

b. Orienting the Chart. In flight, the course line on the chart should be oriented with the direction of flight of the aircraft. All surface objects will be directionally oriented with the chart.

Section II. NAVIGATION WHILE TERRAIN FLYING

10–10. Definition

Terrain flying is the tactic of employing aircraft in such a manner as to utilize the terrain, vegetation, and manmade objects to enhance survivability by degrading the enemy’s ability to visually, optically, or electronically detect or locate the
aircraft. This tactic involves a constant awareness of the capabilities and position of the enemy weapons and detection means in relation to available masking terrain features and flight routes. Terrain flying, of necessity, involves flight close to the Earth’s surface and includes tactical application of low level, contour, and nap-of-the-earth (NOE) flight techniques as appropriate to the enemy’s capability to acquire, track, and engage the aircraft.

10–11. General

Army aviation units must be prepared to operate and survive in a high threat environment to be effective on the modern battlefield. In order to offset the enemy air defense threat, the aviator uses the techniques of terrain flying to mask the aircraft location and identity from enemy observation and fires. To navigate while terrain flying, the aircraft is directed along a specific course by using pilotage, dead reckoning, and available electronic navigational aids in such a manner that the aircrew knows the aircraft position in relation to the terrain and enemy at all times.

a. Navigation while terrain flying is more difficult than navigation at higher altitudes. Navigation at NOE altitudes is more difficult and requires a greater degree of premission planning, map reconnaissance, and route selection than navigation at low level and contour flight levels. The range of vision is reduced so that fewer checkpoints can be utilized at any one time. The tactical situation may dictate that the aviator avoid areas that contain many manmade objects that would aid in navigation. Because of the necessity for flying close to the terrain, the avoidance of obstacles will reduce the time that the aviator will have for map reading and determining his position.

b. Reduced visibility because of smoke, dust, and fog or haze; wind turbulence, shifts and downdrafts; and the constant vigilance for natural or manmade obstructions in the flightpath will all serve to draw the aviator’s attention away from navigation duties and to decrease his overall efficiency by inducing fatigue.

c. Low-level, contour, and NOE flights are performed by a crew consisting of a pilot and copilot (or qualified observer). Flight planning is accomplished by the team and the exact inflight duties are agreed upon. The copilot or observer usually performs navigational duties and monitors the engine and flight instruments.

d. Navigation uses one or a combination of the following techniques:

(1) Pilotage—Correlation of geographical features on the ground to those on a navigation chart or aerial photograph in order to maintain orientation and the desired track (para 10–1 through 10–9).

(2) Dead reckoning—A method for determining position by means of a heading indicator and calculations based on speed, time elapsed, wind effect, and direction flown from a known position (chap 12, 13, and 14).

(3) Radio navigation—Radio location intended for the determination of position or direction or for obstruction warning in navigation (chap 16, 17, and 18).

10–12. Flight Levels

The navigational techniques discussed in this section apply to:

a. Low-level flying.

b. Contour flying.

c. Nap-of-the-earth flight.

10–13. Low-Level Flying

Low-level flying is flight conducted at a selected altitude at which detection or observation of an aircraft or of the points from which and to which it is flying is avoided or minimized (fig 10–3). The route is preselected and conforms generally to a straight line and a constant airspeed and indicated altitude. This method is best adapted to flight conducted over extended distances or periods of time.

a. Low-level flying will assist in avoiding or minimizing the threat of observation or detection by personnel on the ground. In addition it can be used in uncontrolled airspace for flight under low ceiling if IFR flight is undesirable.

b. For low-level flying, sectional aeronautical charts can be used if the flight level is high enough to see a number of checkpoints at one time and the terrain has many easily identified checkpoints. However, the flight level is usually so low that large scale maps (scales of 1:25,000 and 1:50,000) are required. These maps contain detailed features of the terrain that are not found on sectional aeronautical charts. As the flight altitude is lowered and visual distances lessened, the surface features become more prominent. The terrain perspective changes from that of a plane surface to that of a silhouette and the interpretation of relief becomes more important. The scale of map needed for the flight will depend on the distance to be traveled, the degree of detail required, and the speed of the aircraft. Different
scaled maps may be used for various parts of the flight as required by the mission. Scaled aerial photographs would also be excellent to supplement the maps.

c. For premission planning, use the information given in the mission and intelligence briefing for plotting the destination, intermediate points of landing, air control points (ACP's), altitude restrictions, forward edge of the battle area (FEBA), known and suspected enemy positions, and other applicable information on the maps. After plotting the above, select the route of flight and alternate routes of flight if not given in the mission briefing. During the conduct of tactical operations, low level flight routes are selected which afford cover and concealment from visual and electronic detection and allow exploitation of surprise. Routes should take advantage of directional characteristics of natural or cultural features that will
simplify navigation. Rather than planning long legs, slight deviations in the route may offer a better selection of navigation checkpoints. Roads, railroads, power transmission lines, canals, stream beds, and natural corridors are excellent for navigation; however, in steep, narrow valleys, enemy cables or other obstacles may be encountered. Turning points should be close to terrain features which can be identified at maximum range. Air control points (ACP), which are points of positive control and coordination between air and ground elements, are excellent choices for turning points. In operations employing formations of appreciable size, turns must be started prior to reaching checkpoints to insure departure on desired course after completion of the turn. The radius of the turn will vary with the type aircraft and size of formation involved. To insure adequate en route positioning, turns should be plotted on the navigation charts. When formations are employed, turns may extend estimated time en route (ETE) to the next checkpoint. Deviations from a selected route may be necessary to avoid defended areas, cities and towns, or short sections of a route exposed to enemy observation. Route deviation can be effected by using an off-course checkpoint as a link between the usable portions of the route. If a checkpoint is not available, a geometrical pattern should be flown to insure return to the original course at the proper point (fig 10-4).

d. When selecting a flight altitude, particular attention must be given to terrain elevation, both along the intended flightpath and adjacent to it. The highest terrain feature, as well as abrupt or irregular changes in terrain elevation along the route, must be noted to insure clearance, particularly in the event of unforeseen weather. The selected altitude should also provide concealment from visual and electronic detection.

e. Checkpoints should be selected not more than 5 minutes apart along the route. A 2-minute interval is recommended; however, this will vary with the specific mission, the speed of the aircraft, and the number of available checkpoints. Due to the perspective presented at low levels, checkpoints are divided into two general categories, which may overlap according to the terrain flown.

(1) Distant. Distant checkpoints keep the aviator oriented and offer a general course to follow. Both natural and manmade terrain features which stand out above the horizon and have distinctive profiles can be readily identified at long distances and will remain in view a relatively long period of time. Examples are prominent mountains and hilltops, passes and cuts through high terrain, communication towers, gaps in the tree line in forested areas, and powerline and pipeline rights-of-way.

(2) Near. Some checkpoints must be selected on or very near the intended flightpath in order to obtain time/distance factors along a given course. These checkpoints are essential in obtaining accurate data on groundspeed and exact location at a given time. Such points include railroad and highway bridges; junctions, crossings, and prominent curves and turns in railroads and highways; stream junctions and other prominent configurations; lakes and ponds; churches and schools; and

![Geometrical pattern to return to original course](image-url)
various patterns formed by the combination of timbered and adjacent cleared lands. Roads, railroads, and streams usually can be detected in vegetation when approached at a shallow angle; however, approaches from the perpendicular may make them difficult to see due to the masking effect of vegetation.

1. Adherence to preplanned routes, and accuracy in estimated times of arrival for rendezvous, turning points, and initial points are of paramount importance to successful low level navigation. Since one of the principal difficulties of low level navigation is the physical manipulation of the ordinary navigational tools, a flight plan graph (FPG) will reduce the demand upon time and effort without sacrificing accuracy and reliability.

1) Flight plan graph. The flight plan graph (fig 10-5) is a device for monitoring flight progress of a mission. It precludes the necessity for carrying an excessive number of maps, or drawing unnecessary lines and notes on necessary maps. It is prepared during the mission planning phase and requires little attention during the flight. Basically, the flight plan graph consists of a line representing the flight plan time from departure to destination or turning point, and roughly parallels the true course of the flight. Predicted times to various points along the true course, together with departure and destination times, are plotted on this time scale. Thus, the flight plan graph represents a visual time line comparable to the predicted track. Using the time line, the predicted estimated time of arrival to any point on the predicted track can be determined at any time without computation. Comparison with a fix, checkpoint, or obstacle gives the aviator or observer an indication of the time he is ahead or behind his flight plan. In addition, this time difference can be applied to destination and/or intermediate checkpoints to maintain accurate running estimated times and arrivals for these positions.

2) Preparation. The flight plan graph can be prepared as follows:

(a) Draw a line to represent the true course. This line should be drawn parallel to the long axis of the paper.

(b) On the true course line, using a suitable scale, indicate departure and destination points. All time intervals are evenly spaced since groundspeed is held constant.

(c) Using conventional signs and symbols, indicate, at properly scaled times, the checkpoints, fixes, and terrain obstacles along and adjacent to the route of flight.

(d) With lines perpendicular to the true course and flight plan graph lines, connect check-

10-14. Contour Flying

Contour flying is flight at low altitude conforming generally, and in close proximity, to the contours of the Earth (fig 10-3). This type flight takes advantage of available cover and concealment in order to avoid observation or detection of the aircraft and/or its point of departure and landing. It is characterized by a varying airspeed and a varying altitude as vegetation and obstacles dictate. The principals of navigation involved are

Figure 10-5. Flight plan graph.
similar to those for low-level flying (para 10-13), but the execution requires a higher degree of training.

a. Definition. Nap-of-the-earth flight is flight as close to the Earth's surface as vegetation or obstacles will permit, while generally following the contours of the Earth (fig 10-3). Airspeed and altitude are varied as influenced by the terrain, ambient light, weather, and enemy situation. The pilot preplans a broad corridor of operation based on known terrain features which has a longitudinal axis pointing toward his objective. In flight, the pilot uses a weaving and devious route within his preplanned corridor while remaining oriented along his general axis of movement in order to take maximum advantage of the cover and concealment afforded by terrain, vegetation, and manmade features. By gaining maximum cover and concealment from enemy detection, observation, and fire power, nap-of-the-earth flight exploits surprise and allow for evasive action.

b. NOE Navigation. During NOE flight, terrain features rather than manmade features are used as aids in navigation. This type of navigation requires a high degree of proficiency by the crew. To successfully navigate at nap-of-the-earth altitude, the aviator must accomplish the three phases of NOE navigation:

(1) Premission planning.
(2) Map reconnaissance.
(3) Map reading/terrain correlation during flight.

c. Premission Planning. Because tactical maps contain a military grid reference system and display manmade features more accurately, they are preferred over other types of maps. A large scale (1:25,000 or 1:50,000) map is desirable. It provides the detail necessary for accurate navigation; however, the size of the map sheet makes it difficult to use in the cockpit. Time must be devoted to folding the map prior to the mission in order that it can be effectively displayed. After receiving the mission and intelligence briefing, specific planning remarks can be placed on the map which will assist in route selection. This information should include: objective area, starting point, FEBA, and known and suspected enemy air defense weapons and ground forces. After plotting these positions, a detailed map reconnaissance should be conducted to select several flight routes both to and from the objective area. Final selection of the primary route will be based upon the cover and concealment along the route of flight. After selecting the primary route, air control points (ACP) and release points (RP) are identified. These control points should be well-defined terrain features which facilitate ease of recognition and can be used to control and coordinate movement of the aircraft with other elements of the combined arms team. Because terrain features at night are less distinguishable, greater emphasis is placed upon using manmade features; i.e., silo, bridge, or grouping of lights, as control points. Remarks written on the map sheet should be placed on the map so as not to obscure the map presentation above the flight route. Since frequent heading and airspeed changes are made during NOE flight, accurate estimates over control points are difficult. To assist the aircrew in meeting time estimates, tic marks can be used to indicate distances along the route. This procedure enables the navigator to determine, at a glance, the distance to a control point, and aids him in recommending airspeed adjustments (fig 10-6). Where routes exist that permit the helicopter to be flown generally in a straight line, magnetic headings can be noted on the map to help in navigation. Conditions which allow the helicopter to be flown over a straight line may exist over a desert where very little terrain variation exists. Use of time and distance estimates to arrive at a location during NOE flight is uncommon, but may be used for a short segment of a course during night operations or during daylight hours when visibility is restricted. When using this technique, time estimates should not be overflown. Continuous orientation is essential to insure the success of the mission.

d. Map Reconnaissance. After planning the route of flight and alternate routes of flight, the pilot and copilot should make a thorough map study together. They should be able to look at the map and visualize the entire route of flight. Aerial photographs should also be used if they are available. The terrain along and in the vicinity of the route should be studied and key terrain features noted. Limiting points or barriers (easily identifiable features such as railroads, rivers, canals, powerlines, or ridges that may be used to prevent overflying a turning point or objective area) should be selected. Barriers that approximately parallel the course line or that are located slightly beyond or converging in a V-formation toward a turning point or objective area are the most useful. If no ground features are suitable for use as barriers, time may be used. Known or suspected hazardous areas should be identified and possible courses of action agreed upon. Remember that once the NOE flight is begun there will be no time to do detailed map study.

e. Map Reading During Flight.

(1) During NOE flight, the copilot or aerial observer will furnish the pilot with direction
information and speed corrections in order to arrive at the next checkpoint on time. The copilot should have the course line on the map oriented with the direction of flight. He should move his finger or a pencil along the course line in order to maintain the location of the aircraft, tell the pilot what to expect ahead, monitor the heading, warn the pilot which way to turn prior to reaching turning points, monitor instruments, and monitor the radio.

(2) The normal tendency for an inexperienced crew will be to utilize heading and airspeeds. Though this procedure is useful during contour and low level flight, it is extremely dangerous during NOE flight because it forces the pilot to look in the cockpit. A suitable technique is to utilize terrain features to navigate. The copilot identifies the feature on the map and describes it to the pilot—“stay just to the left of this stream we are approaching.” The pilot points out

Figure 10-6. NOE map plotting.
significant terrain features to the copilot instead of assuming he has seen them—"we are approaching an open field with a stream on this side of it and there is a saddle at 10 o'clock at about 1,000 meters." The use of clock positions and rally terms (start turn, continue, stop turn) can also be useful navigation techniques used in conjunction with terrain navigation.

3. If a course deviation must be made, use the following procedures:
 (a) Be sufficiently familiar with the map and/or terrain in order to select a suitable deviation route within a minimum time.
 (b) Determine whether the deviation will be around the obstacle to return to the original route or to a preplanned alternate route.
 (c) Select the point from which the deviation course will start and end.
 (d) Select a deviation route which offers as great a masking capability as the original route when possible. If time permits, the deviation route should be planned in its entirety before reaching the point from which it will begin.
 (e) Accurate en route navigation must be maintained.

4. The pilot and copilot should keep in mind the following points when correlating terrain features with those shown on the map:
 (a) Manmade features are of secondary importance because they are subject to rapid change.
 (b) The position of the sun and the shadows may change the shape of objects or interfere with their being seen.
 (c) Poor visibility caused by rain, fog, or clouds may prevent seeing or seeing clearly the terrain. On the other hand, excellent visibility may cause underestimation of distance to objects.
 (d) In summer, the vegetation will be more dense and trees will be in leaf. This may block the observation of terrain features. In winter, unless evergreen trees are present, the terrain features will be less likely to be hidden by foliage.
 (e) Snow and ice will cover many terrain features in wintertime.
 (f) Recent heavy rains may cause streams or bodies of water to appear larger than usual.

The principles of radio navigation found elsewhere in this manual with the exception of tactical instrument flight does not apply to terrain flying. Because radio navigational aids (e.g., VOR, NDB, radar) require line-of-site propagation, they become unreliable at NOE altitudes. The low-frequency, nondirectional radio beacon (NDB) provides reception for the greatest distance; however, information displayed on the RMI indicator is unreliable, and can only be used for orientation. When the tactical situation requires the use of radio aids for navigation, portable NDB's can be positioned along the route on high terrain. This procedure will increase the range and accuracy of the NDB. To minimize the enemy's ability to locate and destroy these NDB's, they must remain off when not being used by the aircrew. FM homing provides the aircrew an accurate means of radio navigation for short distances to locate ground units which transmit an FM radio signal. When radio navigation is being used, crewmembers must continually cross-check to insure proper orientation. This is required to protect against the enemy's duplicating radio signals by establishing false stations and luring friendly aircraft into their position.

10–17. Weather

During a tactical situation in which the success of the mission demands the utilization of terrain flying, weather considerations increase in importance. For additional information concerning weather and its effects, see FM 1–30.

a. Visibility. Visibility is a primary weather factor in navigation during low level, contour, and NOE flight. During periods of restricted visibility, checkpoints and terrain features essential to orientation and accuracy become vague or obliterated. During periods of reduced visibility, the aviator conducting low level and contour flight must rely heavily on dead reckoning; and the aviator conducting NOE flight must follow the more recognizable terrain features such as rivers, prominent draws, and backsides of ridgelines.

b. Winds. Especially during NOE and contour flight, greater attention must be given to the effects of wind than during navigation and flight at higher altitudes. Winds near ground level, as well as those at higher levels, are subject to unexpected changes. Should inflight observations indicate changed wind conditions, corrections should be calculated as quickly as possible.

(1) One advantage of low-level flight is the visual indication of surface wind such as from smoke and dust. Because the aircraft is operating close to the surface, it will usually be in the same wind conditions. This allows direct reading of the wind direction rather than by computation as at higher altitudes.

(2) The combination of wind and certain types of terrain may produce turbulence intense enough to be a hazard to light aircraft. In rugged terrain, average or spot wind measurements frequently are non-representative and should be used with
caution. Under certain wind conditions, routes through such areas as deep valleys, gorges, and mountain passes may have to be avoided because of severe turbulence.

c. *Temperature.* Temperature (as well as humidity or dewpoint) and its influence on density altitude and icing conditions must always be considered in navigation at low level. The margin of safety and room for maneuvering to overcome the hazards of high density altitude or icing conditions decrease as the flight level lowers. Density altitude is more important when flying at low altitudes, particularly in areas where turbulence and downdrafts may be encountered. Terrain flying on hot days may also increase pilot fatigue due to increased cockpit temperatures. Areas with predicted or suspected icing conditions should be avoided.

10–18. Navigation at Night

a. The feasibility of attempting low-level flight at night depends on the geographical area, available ambient light, availability of night vision devices, and the weather. The most important factor of low-level navigation at night is the increased danger of collision with terrain or manmade objects. A hazards map should be maintained listing the heights of all known and suspected obstructions. In areas where low-level flight at night may be necessary, as in a combat zone, there would be a lack of obstruction lights. Many cultural features do not appear the same at night as during the day; however, rivers, lakes, coast lines, and most manmade objects with distinctive outlines are good checkpoints at night.

b. When flying in mountainous terrain, the aviator must realize that the actual horizon is near the base of the mountains. The summit of peaks used as a horizon would place the aircraft in an attitude of constant climb.

c. To prevent vertigo, distraction of attention, and loss of night vision, cockpit lights should be used only when necessary. When possible, a copilot or observer should make any in-flight computation necessary and assist in monitoring flight and engine instruments.

d. Aviators should be proficient in daytime low-level, contour, and NOE navigation before attempting extensive low-level navigation at night. With proper and extensive training, safe low-level flight can be conducted at night. The same navigational procedures used in daylight low-level flight apply at night; but the execution requires more training and practice to achieve and maintain adequate proficiency.
CHAPTER 11

PLOTTING AND MEASURING

11-1. General

Plotting is establishing points and lines on a chart with reference to meridians and parallels. Measuring, as used in this chapter, refers to the measurement of distance and direction on a chart. The chart serves as a record of the flight and provides information necessary for the successful completion of the flight. Chart work is a fundamental navigation skill and must be accurate.

11-2. Plotting Tools

a. Pencil and Eraser. Use a sharp, soft lead pencil and a soft eraser. The pencil makes a fine black line which is easy to see and makes chart work more precise; the eraser will not damage the chart.

b. Dividers. Use dividers to step off distances on a chart. The dividers should have their points separated to the desired distance as determined from the proper chart scale (latitude or graphic) or the plotter scale (fig 11-1). The distance scale is thereby transferred to the working area of the chart and lines of desired length can be properly marked off. By reversing the process, unknown distances on the chart can be spanned with the dividers and compared with the chart scale. While measurements are being made, the charts must be flat and smooth between the dividers. A wrinkle may cause an error of several miles.

c. Plotter. A plotter is an instrument designed primarily to aid in drawing and measuring lines on an aeronautical chart. The plotter, air navigation, type PLU-2/C is the type currently in use by the Army aviator.

11-3. Description of the Type PLU-2/C Plotter

a. General. The PLU-2/C plotter (fig 11-1) is made of transparent plastic and has lines and scales printed in black. The rectangular part of the plotter has a straightedge for drawing lines, and scales for measuring distances. The semicircular part of the plotter has three circular scales for measuring direction.

b. Rectangular Part. All scales on the rectangular part are for measuring distances in nautical miles. The two upper scales read outward from the center in both directions. The three lower scales read from left to right. Scales of 1:500,000 (Sectional Aeronautical Charts), 1:1,000,000 (Operational Navigation Charts and World Aeronautical Charts), and 1:2,000,000 (charts such as Jet Navigation Charts) are provided.

c. Circular Scales. The circular scales are calibrated in degrees. The outer scale, reading from 0° to 180° (right to left), is for direction in the first and second chart quadrants (north through east to south, fig 11-2). Since these directions are to the right on the chart, the outer scale has an arrow pointing to the right. The inner scale, reading from 180° to 360° (right to left), is for directions in the third and fourth quadrants (fig 11-3). The

Figure 11-1. Plotter, air navigation, type PLU-2/C.
Figure 11-2. Measuring course in the first and second quadrants.

center of curvature of both scales is marked by a small hole.

d. The 60° Center Scale. This scale is an aid when measuring courses that are nearly north or south. The outer scale reads from 150° to 210° and the inner scale reads from 30° to 330°.

11-4. Technique for Using the PLU-2/C Plotter

a. Measuring a Course. To measure a course (fig 11-4), place the center hole on a meridian approximately midway along the plotted course line, and place the straightedge parallel with the course line. If the chart meridians do not intersect the course line, extend the line and move the straightedge of the plotter parallel to the course line until the center hole lies over a meridian (fig 11-5). Figure 11-4 shows the method of reading direction. Observe the small arrows on the circular scale to determine correct direction. Read the scale on which the small black arrow points in the direction of the course, and always read “up” the scale from the smaller values toward the larger values.

b. Drawing Course Line From a Known Point. To draw a given course line from a known point,
Figure 11-6. Moving plotter to a meridian.

Place the point-end of a pencil at the known point. While the plotter is being pushed and pivoted against the pencil, the straightedge will remain on the known point while the center hole and the scale reading are being aligned with a meridian. The pencil will be in place for drawing the course line when the plotter has been properly aligned with a meridian (fig 11-6).

c. Measuring and Drawing Courses Near 0° or 180°. In drawing a course line that is nearly north or south, the center scale may be used (fig 11-7).
1. FROM A TO B, READ INNER SPECIAL SCALE (10°)
2. FROM B TO A, READ OUTER SPECIAL SCALE (190°).

NOTE. REVERSING PLOTTER POSITION FROM LEFT TO RIGHT SIDE OF THE COURSE LINE DOES NOT AFFECT READING.

Figure 11-7. Courses near 0° or 180° measured with a circular scale.
CHAPTER 12
INSTRUMENTS USED FOR DEAD RECKONING NAVIGATION

12–1. Introduction

a. **Dead reckoning** is the method for determining position by means of a heading indicator and calculations based on speed, time elapsed, wind effect, and direction flow from a known position.

b. The instruments used by the pilot-navigator for dead reckoning navigation include the outside air temperature gage, airspeed indicator, altimeter, clock, and one or both of the following compass systems:

1) **Magnetic compass system.**
2) **Slaved gyro system.**

c. These instruments provide information concerning direction, airspeed, altitude, and time, each of which must be correctly interpreted for successful navigation. Information on the instruments discussed in this chapter is general in nature. For complete description, theory, and operation of these instruments, see chapter 2 and appropriate aircraft operator’s manual.

12–2. Magnetic Compass

a. **General.** Errors of the magnetic compass were discussed in chapter 2. Certain of these errors must be corrected when the compass is used for navigation.

b. **Compass Corrections, Application.**

1) **System for applying compass corrections.** To find what the compass should read in order to follow a given course, it is corrected for drift, variation, and deviation. When drift correction (para 13–3) is applied to a true course (TC ± DC = TH), it becomes a true heading. A good method for recording application of variation and deviation is as follows:

 (a) Write the following equations:

 \[
 \begin{align*}
 TH \pm V &= MH \\
 MH \pm D &= CH
 \end{align*}
 \]

 TH is true heading; V, variation; MH, magnetic heading; D, deviation; and CH, compass heading.

 (b) Below each factor, place the known information.

 \[
 \begin{align*}
 TH &\pm V = MH \\
 168^\circ 12^\circ E
 \\
 MH &\pm D = CH \\
 5^\circ W
 \end{align*}
 \]

 (c) When making calculations from a true heading to a compass heading, easterly error is subtracted; westerly error is added. Completing the problem, subtraction of the 12° E (variation) from the TH (168°) gives a magnetic heading (MH) of 156°. Place this figure under both of the MH’s. Adding the 5° W (deviation) to the MH (156°) gives a compass heading (CH) of 161°. Place the compass heading under CH.

2) **Reversing the equation.** To find the true heading when the compass heading is known, the same equation is written as in the above problem. Placing the known information in the proper places, it would appear as follows:

 \[
 \begin{align*}
 TH \pm V &= MH \\
 12^\circ E
 \\
 MH \pm D &= CH \\
 5^\circ W 161^\circ
 \end{align*}
 \]

 (a) When changing from a compass heading to a true heading, easterly error is added; westerly error is subtracted. This is the reverse of changing from TH to CH.

 (b) Subtract the 5° W from the CH (161°). Place this figure (156°) below the MH’s.

 (c) Add the 12° E to the MH (156°) to obtain the TH (168°). Place this figure below the TH.

12–3. Gyro Heading Indicator

The gyro heading indicator is used for making turns to headings and for flying headings in order to maintain a course. It is not a direction-seeking instrument and must be used in conjunction with the magnetic compass. During flight, the gyro heading indicator must be set to the same heading as the magnetic compass.

12–4. Slaved Gyro System

The slaved gyro system is a direction-seeking system and its heading indicator is used for making turns to headings and for flying headings in order to maintain a course. It has no significant amount of deviation and has no deviation card. Therefore, if the slaved gyro heading indicator is used for navigation, the deviation is eliminated from the equations set forth in paragraph 12–2.
12-5. Airspeed Indicator

For dead reckoning navigation, the true airspeed (TAS) must be computed. To find the true airspeed, corrections must be made to the indicated airspeed (IAS) or calibrated airspeed (CAS), if applicable, for temperature and pressure altitude. True airspeed computation is discussed in chapter 14. If no other method is available, the following rule of thumb may be used: Add 2 percent of the indicated airspeed for each 1,000 feet of altitude to the indicated airspeed to arrive at an approximate true airspeed.

12-6. Outside Air Temperature Gage

During flight the aviator will use the temperature reading from the outside air temperature gage for computing true airspeed (TAS). Refer to chapter 14 for this computation.

12-7. Altimeter

The altimeter is used to determine the pressure altitude during flight. Pressure altitude is determined by setting 29.92 in the Kollsman window of the altimeter. Pressure altitude is then used in computing true airspeed. Refer to chapter 14 for this computation.

12-8. Clock

The clock is used in flight to determine the time required to fly a measured distance on the navigation chart. The distance is then divided by the time to determine the ground speed of the aircraft.
CHAPTER 13
WIND AND ITS EFFECTS

13–1. Wind Direction and Windspeed

Wind direction is the direction from which the wind blows; e.g., wind blowing from the northwest is a northwest wind. Windspeed is the rate of wind motion without regard to direction. In the United States, windspeed is usually expressed in knots. For example, a west wind of 25 knots is recorded as W/V 270°/25 knots. "Downwind" is movement with the wind; "upwind" is movement against the wind.

13–2. Effect of Wind

a. General. Moving air exerts a force in the direction of its motion on any object within it. Objects that are free to move in air will move in a downwind direction at the speed of the wind. An aircraft will move with the wind as does the balloon shown in figure 13–1. In addition to its forward movement through the air, if an aircraft is flying in a 20-knot wind, it will move 20 nautical miles downwind in 1 hour. The path of the aircraft over the Earth is determined by the motion of the aircraft through the air and the motion of the air over the Earth's surface. The direction and movement of an aircraft through the air is governed by the direction in which the nose of the aircraft is pointed and by the speed of the aircraft (fig 13–2).

b. Drift. The sideward displacement of the aircraft caused by the wind is called drift (fig 13–3). Drift is measured by the angle between the heading (direction in which the nose is pointed) and the track (actual path the aircraft has made over the Earth).

Note. Track must not be confused with course, which is the plotted course or intended track.

c. Example of Drift. As shown in figure 13–3, an aircraft departs point X on a heading of 360° and flies for 1 hour in a wind of 270°/20 knots. The aircraft is headed toward point M directly north of X. Its heading is represented by line XM. Under no-wind conditions, the aircraft would be at point M at the end of 1 hour. However, in this example there is a wind of 20 knots and the aircraft moves with it. At the end of 1 hour, the aircraft is at point N, 20 nautical miles downwind from M. The line XM is the intended path of the aircraft through the air; the line MN shows the motion of the body of air; and the line XN is the actual path of the aircraft over the Earth.

d. Drift and Groundspeed Change With Heading Change. A given wind causes a different drift on
MOVEMENT OF AIR

Figure 13-2. Wind effect on an aircraft.

each aircraft heading and affects the distance traveled over the ground in a given time. With a given wind, the groundspeed (GS) varies with each different aircraft heading.

e. Effects of a Given Wind on Track and Groundspeed With Different Aircraft Heading. Figure 13-4 illustrates how a wind of 270°/20 knots affects the groundspeed and track of an aircraft flying on headings of 360°, 090°, 180°, and 270°. On each different heading the aircraft flies from point X for 1 hour at a constant true airspeed. The length of each dash line represents the distance the aircraft travels through the body of air. This is the same distance it would have traveled over the ground in 1 hour had there been no wind. Each solid line represents the track of the aircraft. The length of each solid line represents groundspeed. Differences between the length and direction of the solid and dash lines represent the wind effect on track and groundspeed.

f. Headwind, Tailwind, and Crosswind Effect. As shown in figure 13-4, the wind of 270°/20 knots causes right drift on a heading of 360°; on a heading of 180°, it causes left drift. On the headings of 090°, the aircraft, aided by a tailwind, travels farther in 1 hour than it would with no wind; thus, its groundspeed is increased by the wind. On the heading of 270°, the headwind reduces the groundspeed. On a heading of 360° and 180°, the groundspeed effect is usually complicated by the drift correction applied.
13—6. Groundspeed (GS)

Groundspeed is the result of wind velocity and the forward motion of the aircraft through the air. In calm air, the speed of the aircraft over the ground (GS) is equal to its true airspeed (TAS). If the aircraft is moving against the wind (headwind), the groundspeed is equal to the difference between the true airspeed and the windspeed. If the aircraft is moving with the wind (tailwind), the groundspeed is equal to the sum of the true airspeed and the windspeed. If the aircraft is moving at an angle to the wind, the groundspeed may be any speed between the extremes of the groundspeeds determined by headwinds and tailwinds. Those groundspeeds that are less than the true airspeed are the result of hindering winds; those greater than the true airspeed are the result of helping winds. Wind directions that are approximately 90° to the longitudinal axis of the aircraft (abeam winds) have a minimum effect on groundspeed. Winds may be classified as headwinds (hindering winds), tailwinds (helping winds), and crosswinds (quartering headwinds or quartering tailwinds).

13—7. Average Groundspeed

Average groundspeed is calculated by dividing the total distance flown by the total time (in hours) required for the flight. Airspeed factors to be considered in computing average groundspeed include—

a. Climbing airspeed is usually less than cruising airspeed.

b. Flying a constant true airspeed on the same outbound and return course with a constant wind
velocity does not produce an average groundspeed equal to the average TAS. For example, figure 13-6 illustrates an aircraft flying a constant TAS (100 kt) for 1 hour against a 30-knot headwind and returning to the starting point.

1) The aircraft will traverse 70 nautical miles (NM) in 1 hour on the outbound course ((A), fig 13-6); groundspeed is 70 knots (100 kt TAS - 30 kt W/V).

2) On the return course ((B), fig 13-6), the aircraft will have a groundspeed of 130 knots (100 TAS + 30 W/V) and will traverse the 70-nautical-mile distance in 32 minutes (0.53 hour).

3) The total distance (140 NM) divided by the total flying time (1.53 hours) equals an average groundspeed of 91 knots.

Figure 18-6. Drift and drift correction.
Figure 18-6. Average groundspeed.
CHAPTER 14
THE DEAD RECKONING (DR) COMPUTER

Section I. GENERAL

14—1. Construction and Purpose
A dead reckoning computer is a combination of two devices, one a specially designed instrument for solving wind triangles and the other a circular slide rule for solving mathematical problems.

14—2. The CPU-26A/P DR Computer
Many different types of dead reckoning navigation computers exist, but the construction and design features of the major types are very similar. For illustrative purposes, the standard Army DR computer, type CPU-26A/P, is used throughout this chapter.

Section II. THE SLIDE RULE FACE

14—3. The Slide Rule
a. Scales. The slide rule of the CPU-26A/P computer consists of two circular scales. The outer scale is stationary and is called the MILES scale. The inner scale rotates and is called the MINUTES scale.

b. Scale Values. The numbers on any computer scale, as on most slide rules, represent multiples of 10 of the values shown. For example, the number 24 on either scale (outer or inner) may represent 0.24, 2.4, 24, 240, or 2,400. On the inner scale, minutes may be converted to hours by reference to the adjacent hour scale. For example, 4 hours is found in figure 14-1 adjacent to 24, in this case meaning 240 minutes. Relative values should be kept in mind when reading the computer. For example, the numbers 21 and 22 on either scale are separated by five spaces, each space representing two units. The second division past 21 would be read as 21.4, 2140, etc. Spacing of these divisions should be studied, as the breakdown of dividing lines may be into units of 1, 2, 5, or 10.

c. Indexes. Three of the indexes on the outer stationary scale are used for converting statute miles, nautical miles, and kilometers. These indexes are appropriately labeled “Naut” at 66, “Stat” at 76, and “Km” at 122. On the inner rotating scale are two rate indexes. The large black arrow at 60 (called the SPEED index) is the hour index, and the small arrow at 36 is the second (“Sec”) index (3,600 seconds equal 1 hour). The “Stat” index on the inner scale is used in mileage conversion. Each scale has a “10” index used as a reference mark for multiplication and division. The application of these scales in solving computer problems is illustrated in the specific problems that follow.

14—4. Distance Conversion
a. Problem. How many statute miles equal 90 nautical miles? How many kilometers equal 90 nautical miles?

b. Solution. Using the DR computer, refer to figure 14-2 and solve as follows:
(1) Set 90 on inner scale to “Naut” index.
(2) Read 104 under “Stat” index (104 statute miles).
(3) Read 166 under “Km” index (166 kilometers).

14—5. Simple Proportion
The slide rule face of the DR computer is so constructed that any relationship between two numbers, one on the stationary scale and one on the movable scale, will hold true for all other numbers on the two scales. For example, if the two “10” indexes are placed opposite each other (fig 14-4), all other numbers around the entire circle will be identical. If 20 on the inner scale is placed opposite the “10” index on the outer scale, all numbers on the inner scale will be double those on the outer scale. If 12 on the outer scale is placed opposite 16 on the inner scale, all numbers will be in a 3 to 4 (3/4) relationship. This scale design enables the aviator to find the fourth term of any mathematical proportion when three of the values are known.
10 INDEXES (REFERENCE MARKS)

KILOMETER INDEX

STATUTE INDEX

NAUTICAL INDEX

SPEED INDEX

SECOND INDEX

MILES SCALE

MINUTES SCALE

Figure 14-1. Slide rule face.
Figure 14-2. Distance conversion.

Note. When several distance conversion problems are to be solved between statute and nautical miles, set the "Stat" index on the inner scale under the "Naut" index of the outer scale and read any ratio around the entire slide rule; i.e., 13 statute miles is 11.3 nautical miles, 13 nautical miles is 15 statute miles, etc. (fig 14-3).

14–6. Distance

Time-distance problems are worked on the inner (MINUTES) scale and the outer (MILES) scale.

Figure 14-4. Numerical relationship between the two scales.

a. Problem. If 50 minutes is required to travel 120 nautical miles, how many minutes are required to travel 86 nautical miles at the same rate?

b. Solution. Using the DR computer, refer to figure 14–5 and solve as follows:

1. Set 50 (inner scale) under 120 (outer scale).
2. Under 86 (outer scale), read 36 (inner scale) minutes required.

Figure 14-3. Converting several distances simultaneously.

Figure 14-5. Time and distance.
14—7. Determining Groundspeed

Groundspeed equals distance divided by time.

a. Problem. What is the groundspeed if it takes 35 minutes to fly 80 nautical miles?

b. Solution. Using the DR computer, refer to figure 14-6 and solve as follows:
 (1) Set 35 (inner scale) opposite 80 (outer scale).
 (2) Over 60 index read groundspeed (137 kt).

14—8. Determining Time Required

Time equals distance divided by groundspeed.

a. Problem. How much time is required to fly 333 nautical miles at a groundspeed of 174 knots?

b. Solution. Using the DR computer, refer to figure 14-7 and solve as follows:
 (1) Set rate of 60 index on 174 (outer scale).
 (2) Under 333 (outer scale) read 115 minutes (inner scale) 1 + 55 (hours scale).

14—9. Determining Distance

Distance equals groundspeed multiplied by time.

a. Problem. How far does an aircraft travel in 2 hours and 15 minutes at a groundspeed of 138 knots?

b. Solution. Using the DR computer, refer to figure 14-8 and solve as follows:
 (1) Set 60 index at 138 (outer scale).
 (2) Over 135 (inner scale) or 2 hours and 15 minutes (hours scale), read 310 nautical miles (outer scale).

14—10. Use of the 36 Index

The number 36 on the inner scale is used in solving rate-time-distance problems in instrument flight when time must be calculated in seconds and minutes instead of minutes and hours. For example, determine the time required to fly from
the final approach fix to the missed approach point on an instrument approach (chap 18).

a. Formula. Problems where seconds must be used as a unit of time may be solved by the formula

$$\text{GS} = \frac{\text{Distance}}{\text{36 Seconds}}$$

in which GS is the groundspeed; 36 represents the number of seconds in 1 hour (3,600); distance is the number of miles or decimal parts of miles to be flown; and seconds is the time required to fly that distance.

b. Problems Involving Less Than 60 Seconds.

(1) Problem. What is the time required from the middle marker to the point of touchdown if the groundspeed is 100 knots and the distance between these points is 0.5 nautical mile?

(2) Solution. Set 36 (inner scale) under the groundspeed of 100 knots (10 on the outer scale). Under 50 (0.5 NM) on the outer scale, read 18 seconds on the inner scale (fig 14-9).

c. Problems Involving More Than 60 Seconds.

(1) Problem. What is the time required to fly from the outer marker to the middle marker if the groundspeed is 95 knots and the distance between the two points is 5 nautical miles?

(2) Solution. Set 36 (inner scale) under the groundspeed of 95 knots (95 on the outer scale). Under 50 (5 NM) on the outer scale, read 19 (190 seconds), or 3 minutes and 10 seconds on the inner scale (fig 14-10).

Note. When using the minutes scale as a seconds scale, the hours scale becomes a minutes scale.

14—11. Determining Gallons or Pounds Used in a Given Time

Place the 60 index under rate (gph) and read gallons used over the given time. To convert gallons to pounds or pounds to gallons, the following conversion factors are used in simple proportion (para 14-5):

a. Gasoline. 6.0:1.

b. JP-4 fuel. 6.5:1.

14—12. Determining Rate of Fuel Consumption

Rate of fuel consumption equals gallons of fuel consumed divided by time.

a. Problem. What is the rate of fuel consumption if 30 gallons of fuel are consumed in 111 minutes (1 hour and 51 minutes)?

b. Solution. Using the DR computer, refer to figure 14-11 and solve as follows:

(1) Set 111 (inner scale) under 30 on outer scale (in this case, outer scale is used to represent gallons).

(2) Opposite the 60 index, read 16.2 gallons per hour (gph).

14—13. Fuel Consumption

Use same scales as used with the time-distance problems discussed in paragraph 14—6 and solve the following fuel consumption problem:
14–14. Fuel Consumption (Distance, Weight, Time)

Aircraft performance data charts used in determining maximum flying range sometimes base fuel consumption rates on nautical miles flown per pound or gallon of fuel consumed. The aviator often desires to compute maximum flying range based on fuel consumption rate in pounds or gallons per hour. This conversion is accomplished as follows:

a. Formula. The relationship between nautical miles per pound and pounds per hour is expressed as—

\[
\text{Nautical miles per pound (or gallon)} = \frac{\text{TAS (miles flown per hour)}}{1 \text{ pound (or gallon)}}
\]

b. Problem. The maximum flying range based on fuel consumption is indicated on the aircraft performance chart as .231 nautical mile per pound. At a true airspeed of 196 knots, what is the aircraft fuel consumption rate in pounds per hour?

c. Solution. Using the DR computer, refer to figure 14–13 and solve as follows:

(1) Set .231 (nautical miles per pound) on the outer scale over the “10” index (1 pound) on the inner scale.

(2) Under the TAS (196 knots) on the outer scale, read pounds per hour (850) on the inner scale.

Figure 14-11. Determining rate of fuel consumption.

Figure 14-12. Fuel consumption.

Figure 14-13. Converting nautical miles per pound to pounds per hour.
14—15. Airspeed Computations

The window marked FOR AIRSPEED AND DENSITY ALTITUDE COMPUTATIONS provides a means for computing true airspeed when indicated airspeed, temperature, and altitude are known or vice versa. To change from one to the other, it is necessary to correct for altitude and temperature differences existing from those that are standard at sea level. Free air temperature is read from a free air thermometer and the pressure altitude is found by setting the altimeter at 29.92" Hg and reading the altimeter directly.

a. Problem. The indicated airspeed is 125 knots, free air temperature is -15° C., and the pressure altitude is 8,000 feet. What is the true airspeed?

b. Solution. Using the DR computer, refer to figure 14-14 and solve as follows:

(1) Set 8,000 against -15° C. in the airspeed computation window.

(2) Over 125 knots (inner scale), read true airspeed 137 knots (outer scale).

Note. In solving for IAS when TAS is known, locate TAS on outer scale and read answer (IAS) on inner scale.

14—16. Density Altitude

Density altitude is that altitude in the standard atmosphere at which a given air density exists. Because of variations of temperature and pressure, the density of the air on a given day at any given pressure altitude may be that density found several thousand feet higher or lower in the standard atmosphere. Such conditions can be critical in aircraft operations, especially in the operation of helicopters. To compute density altitude, rotate the movable scales of the computer so that the free air temperature is set above the pressure altitude in the window labeled FOR AIRSPEED AND DENSITY ALTITUDE COMPUTATIONS. When set in this manner, the density altitude is read above the pointer in the window labeled DENSITY ALTITUDE. Using the same flight condition as in paragraph 14-15, density altitude is read as 6,200 feet (fig 14-14). Accurate results can only be obtained by using pressure altitude. Pressure altitude can be read directly from the altimeter when the altimeter setting is 29.92.

14—17. Altitude Computations

The window marked FOR ALTITUDE COMPUTATIONS provides a means for computing corrected altitude by applying any variations from standard temperature to indicated (or calibrated) altitude.

a. Problem. The pressure altitude is 9,000 feet, indicated altitude is 9,100 feet, and the free air temperature is -15° C. What is the corrected altitude?

b. Solution. Using the DR computer, refer to figure 14-15 and solve as follows:

(1) Set 9,000 against -15° C. in the altitude computation window.

(2) Above 9,100 feet indicated altitude (inner scale), read corrected altitude 8,700 on the outer scale (corrected altitude).
14–18. Off-Course Correction (Rule of 60)

An aircraft headed 1° off course will be approximately 1 mile off course for each 60 miles flown. This is the rule of 60. Inversely, for each mile an aircraft is off course after each 60 miles of flight, 1° of correction will be required to parallel the intended course. Applied to other distances (multiples of 60), such as 1.5 miles off course in 90 miles, 2 miles off course in 120 miles, or 2.5 miles off course in 150 miles, a correction of 1° will be required to parallel the intended course. To converge at destination, an extra correction must be made based on the same rule of 60.

a. Formulas. The degrees correction required to converge at destination is determined by adding the results of the following formulas:

Correction to parallel course.

\[
\text{miles off course} \div \text{miles flown} \times 60
\]

Additional correction to converge.

\[
\text{miles off course} \div \text{miles to fly} \times 60
\]

b. Problem. An aircraft is 10 nautical miles to the left of course when 150 nautical miles from departure point A. How many degrees correction are required to parallel course? If 80 nautical miles remain to destination B, how many additional degrees are required to converge? In what direction is the correction applied?

c. Solution. Using the DR computer, refer to figures 14–16 and 14–17 and solve as follows:

1. Set 150 (inner scale) under 10 (outer scale) (fig 14–16).
2. Over the 60 index, read 4° (correction required to parallel).
3. Set 80 (inner scale) under 10 (outer scale) (fig 14–17).
4. Over 60 index, read 7.5° to converge.
5. \(4° + 7.5° = 11.5°\), total correction to converge at destination. Since aircraft is off course to the left, correction will be made to the right or added to the original heading. For example, if the original heading was 090°, the new heading is 101.5° or 102° to the nearest degree.

14–19. Off-Course Correction (Drift Correction Window)

This scale in the drift correction window of the CPU–26A/P computer is a refinement of the rule of 60 (para 14–18). Actually an arc of 1 mile subtends an angle of 1° at a distance of 57.3 miles rather than 60 miles. The drift correction window scale incorporates this relationship correctly.

a. Problem. After traveling 400 miles, and the aircraft is 30 miles off course—

1. What drift correction angle is necessary to parallel the desired course?
2. What drift correction angle is necessary to intercept the desired course in 150 additional miles?
b. Solution.

(1) Set the miles off course (30) on the outer scale over the distance traveled (400) on the inner scale and read the correction angle to parallel the desired course in the drift correction window (4.3°) (fig 14-18).

(2) To find the angle to intercept the desired course, place the miles off course (30) on the outer scale over the course miles to interception point (150) on the inner scale. Read the additional angle to intercept in the drift correction window (11.3°) (fig 14-19). The total correction angle to intercept the desired course is therefore 15.6° (4.3 + 11.3).

14-20. Radius of Action (Fixed Base)

Radius of action to the same base refers to the maximum distance an aircraft can be flown on a given course and still be able to return to the starting point within a given time. The amount of available fuel (not including reserve fuel) is usually the factor determining time.

a. Problem. The groundspeed on the outbound leg of the flight is 160 knots; on the return leg, 130 knots. Available fuel permits 4.5 hours (270 minutes) total time for the flight. How many minutes will be available for the outbound leg of the flight? How many minutes will be required for the return leg of the flight? What is the radius of action?

b. Solution. The sum of the groundspeed out (GS₁) and the groundspeed on the return leg (GS₂) is to the total time in minutes (T), as the groundspeed on the return leg (GS₂) is to the time in minutes on the outbound leg (t₁). Minutes on the outbound leg of the flight can be calculated by the formula

\[
\frac{GS₁ + GS₂}{T} = \frac{GS₂}{t₁}
\]

The formula for calculating time required for the return leg of the flight is

\[
\frac{GS₁ + GS₂}{T} = \frac{GS₁}{t₂}
\]

in which t₂ is the time required for the return leg of the flight. These formulas can be calculated on the DR computer as ratio and proportion problems and appear on the DR computer as they appear in mathematical form. To solve radius of action fixed base problems with the DR computer, use the problem given in a above, referring to figures 14-20 and 14-21, and proceed as follows:

(1) Find the sum of the groundspeeds (160 + 130 = 290).

(2) Set the total time (T = 4.5 hours or 270 minutes) under the sum of the groundspeeds (290) (fig 14-20).

(3) Under 130 (GS₂), read the time on the outbound leg, 2 hours + 1 minute or 121 minutes (fig 14-20).

(4) Without changing the setting of the computer, under 160 (GS₁), read the time required for the return leg, 2 hours + 29 minutes or 149 minutes (fig 14-20).
(5) These two amounts of time should be equivalent to the total amount of time of the flight.

(6) Place the 60 index under 160 (GS) and over 121 minutes (time on the outbound leg), read the radius of action, 322 nautical miles (fig 14-21).

Section III. GRID SIDE OF THE DR COMPUTER

14—21. Plotting Disc and Correction Scales

The grid side of the DR computer (fig 14-22) enables the aviator to solve wind problems. It consists of a transparent, rotatable plotting disc mounted in a frame on the reverse side of the circular slide rule. A compass rose is located around the plotting disc. The correction scale on the top frame of the circular grid is graduated in degrees right and left of the true index (labeled TRUE INDEX). This scale is used for calculating drift or drift correction and is labeled drift right and drift left. A small reference circle, or grommet, is located at the center of the plotting disc.

14—22. Sliding Grid

A reversible sliding grid (fig 14-22) inserted between the circular slide rule and the plotting disc is used for wind computations. The slide has converging lines spaced 2° apart between the concentric arcs marked 0 to 150 and 1° apart above the 150 arc. The concentric arcs are used for calculations of speed and are spaced 2 units (usually knots or miles per hour) apart. Direction of the centerline coincides with the index. The common center of the concentric arcs and the point at which all converging lines meet is located at the
lower end of the slide. On one side of the sliding grid the speed arcs are scaled from 0 to 270; on the reverse side, from 70 to 800. The low range of speeds on the sliding grid is especially helpful in solving navigational problems for aircraft having slow-speed flight characteristics.

a. Rectangular Grid. The rectangular grid on the reverse side of the sliding grid (fig 14-23) is designed so that the left half can be used for calculations on the 70 to 800 side of the sliding grid and the right half can be used with the 0 to 270 side of the sliding grid. On the left half, each small division has a value of 10 units; each large division has a value of 50 units. On the right half, the small squares have a value of 3 units; the large squares, a value of 15 units. This grid is used for solving problems such as off-course correction, air plot, and radius of action, and for correcting reported wind (para 14-30).

b. Correction Factors. The F correction factors on the front side of the sliding grid are used for calculating TAS caused by compressibility of air at high airspeeds and altitudes. Army aircraft do not require the application of these correction factors to their TAS (fig 14-22).
Section IV. WIND TRIANGLES

14–23. Wind Triangle Construction

a. Problems involving wind can be solved by constructing a wind triangle. In its simple form, this triangle is made up of three vectors (six vector quantities) whose elements are always the same. The vectors (fig 14–24) are—

(1) A wind vector, consisting of the wind direction and speed.
(2) A ground vector, representing the movement of the aircraft with respect to the ground, and consisting of the course (or track) and the groundspeed.
(3) An air vector, representing the movement of the aircraft with respect to the airmass, and consisting of the heading and the true airspeed.

b. The direction of such vectors is shown by the bearing of a line with reference to north. The magnitude of the vector is shown by comparing the length of a line with an arbitrary scale. For example, if 1 inch represents 10 knots, then a velocity of 50 knots would be shown by a line 5 inches long (fig 14–24).

c. Necessary steps for drawing the wind triangle are—

(1) Draw a vertical reference line with an arrow at the top indicating north.
(2) Draw a very short line intercepting the reference line at a convenient point to indicate the point of origin in the diagram.
(3) Draw in the known vectors (a above).
(4) Close the triangle to determine two unknown factors. (Known and unknown factors will vary; but each factor can be determined, provided each vector includes its own factors, namely direction and length.)

14–24. Wind Triangle Solution

Figure 14–25 illustrates the construction of a wind triangle to solve for heading and groundspeed.

Figure 14–25. Solving for heading and groundspeed.

Figure 14–24. Representing the six vector quantities in a wind triangle.
when the course, wind velocity (W/V), and TAS areknown. Similar triangles are used to solve forheading and TAS or for wind velocity.

a. Plot the wind vector first (AB).

b. Plot the course for an indefinite distance fromthe point of origin (AD).
c. Swing an arc from the end of the wind vector

(B) (using the TAS as the arc radius) to intersectthe course line (C). Draw the air vector (BC).
d. Measure the heading by determining theangle formed between the vertical reference lineand the air vector.
e. Measure groundspeed along the ground vec-tor (AC).

Section V. WIND PROBLEMS

14–25. General

In solving wind problems on the computer, part ofa triangle is plotted on the transparent surface ofthe circular disc. Lines printed on the slide areused for the other two sides of the triangle. Thecenter of the concentric arcs (fig 14–26) is onevertex of the triangle. There are many methodsapplicable for computing any one problem, but thefollowing method for each type of problem isstandard for use by the Army aviator. This sec-tion includes problems where the centerline isused as ground vector and the wind vector isplotted above the grommet.

14–26. Heading and Groundspeed

Computation

a. Problem. The wind is from 160°/30 knots, thetrue airspeed 120 knots, course 090°. What is theheading and groundspeed?
b. Solution. Using the DR computer, refer tofigures 14–27 and 14–28 and solve the problem asfollows:

(1) Set 160° (direction from which the wind isblowing) to the TRUE INDEX (fig 14–27).

Note. Directions used in solving wind problems mustbe compatible; i.e., all in reference to true north or all inreference to magnetic north.
(2) Plot the wind vector above the grommet 30 units (windspeed) and place a wind dot within a circle at this point.

(3) Set 090° (course) at the TRUE INDEX (fig 14-28).

(4) Adjust sliding grid so that the true airspeed arc (120 kt) is at the wind dot.

(5) Note that the wind dot is at 14° converging line to the right of centerline.

(6) Under the 14° correction scale (labeled drift right) to the right of center at the top of the computer, read the heading (104°).

(7) Under the grommet, read the groundspeed (106 kt).

14-27. Heading and True Airspeed Computation

a. Problem. The wind is from 090°/20 knots, course 120°, groundspeed 90 knots. What is the heading and true airspeed?

b. Solution. Using the DR computer, refer to figures 14-29 and 14-30 and solve as follows:

(1) Set 90 (090° wind direction) under the TRUE INDEX and plot wind vector 20 units above the grommet using dot within circle (fig 14-29).

(2) Set course (120°) to the TRUE INDEX (fig 14-30).

(3) Move sliding grid so that groundspeed (90 kt) concentric circle is at the grommet.

(4) The wind dot is now on the converging line 5° to the left of centerline. Read the heading (115°) 5° left of TRUE INDEX on correction scale.

(5) Under the wind dot, read the true airspeed (108 kt).

14-28. Wind Velocity Computation

a. Problem. Heading 130°, true airspeed 100 knots, track 140°, groundspeed 90 knots. What is the wind velocity?

b. Solution. Using the DR computer, refer to figures 14-31 and 14-32 and solve as follows:

(1) Set track (140°) at TRUE INDEX and grommet over the groundspeed (90 kt).

(2) Since the heading is 10° less than the track, find where the 10° converging line to the left of centerline crosses the 100-knot (true
Figure 14-30. Reading heading, drift correction, and true airspeed.

Figure 14-32. Reading wind velocity.

Figure 14-31. Solving for wind velocity.

airspeed) line and place a dot within a circle at this point (fig 14-31).

(3) Turn circular grid until the dot is directly above the grommet (fig 14-32).

(4) Under the TRUE INDEX, read direction from which the wind is blowing (075°). The distance in units between the dot and the grommet indicates the speed of the wind (20 kt).

14–29. Correcting the Reported Wind

A pilotage fix, furnishing information on track and groundspeed, can be used for correcting the reported wind using the rectangular grid portion of the sliding grid.

a. Problem. After flying for 30 minutes, an aviator establishes a fix on a navigational chart and finds he is 6 miles north of his on-course dead reckoning position. The reported wind for the flight was 30 knots from 125°. What is the actual wind condition?

b. Solution. Place the rectangular grid of the slide under the transparent disc.

(1) Rotate the compass rose until the wind direction (125°) is under the TRUE INDEX (fig 14–33).
(2) Draw the wind vector down from the grommet (at 0) to the 30-knot point (A, fig 14-33).

(3) Reason the additional wind component; i.e., since the aircraft is 6 miles north of the desired position after 30 minutes flying time, the wind component is 12 knots (the aircraft would blow off course twice as far in 1 hour), and since the aircraft is drifting to the north, the wind is from the south.

(4) Rotate the compass rose until S appears under the TRUE INDEX (fig 14-34).

(5) From the end of the first wind vector (2) above, plot the additional wind component vertically downward 12 knots to scale (B, fig 14-34).

(6) Connect the end of this second wind vector with the point of origin of the first wind vector (the center of the disc) (C, fig 14-34).

(7) Rotate the compass rose until the corrected wind vector (C) lies along the centerline downward from the center of the disc (fig 14-35). Read the actual wind direction (140°) under the TRUE INDEX, and read the actual windspeed (38 kt) as the length of the vector (C) along the centerline.
14–30. Wind Triangle Variations

a. Many other wind problems can be solved using the grid face of the CPU-26A/P computer, including track and groundspeed, wind and groundspeed from double or multiple drift, wind from groundspeed and drift, and correction for reported wind. Wind triangles may also be plotted on the computer, using the centerline as the air vector, by plotting the wind vector below the grommet.

b. Since the mastery of the wind triangle problems discussed in this section is adequate for flight planning with Army aircraft, a complete discussion of the variations mentioned in a above is not essential or within the scope of this manual.

Figure 14–35. Plotting the actual wind.
CHAPTER 15

RADIO PRINCIPLES

15-1. General

Radio communication and radio navigation are necessary during instrument flight. The aviator should be familiar with radio principles and the capabilities and employment of Army aircraft radio equipment.

15-2. Wave Transmission

According to the wave theory of radiation, sound, light, and electrical energy are transmitted by waves.

a. Wave. Energy transmitted through a substance or space by vibrations or impulse moves in waves. For example, when a stone is dropped into a pond, the energy of motion from the stone causes ripples on the water surface. The ripples (waves of energy) travel outward from the place where the stone struck the water, but the water itself does not move outward. The rise and fall above and below the normal undisturbed water level can be graphed as a curved line.

b. Cycle. A cycle is an alteration of a wave from a specific amplitude through a complete series of movements back to the same amplitude (e below); i.e., one complete wave vibration. A cycle (fig 15-1) is represented by the portion of the wave from A to E, from B to F, from C to G, or between any other two points encompassing exactly one complete amplitude variation. For example, a cork floating on calm water is subjected to cyclic wave movement when a stone is dropped into the water. One wave cycle occurs as the cork (1) rises from the calm water level (normal position) up to the wave crest, (2) drops back to normal, (3) falls into the wave trough, and (4) rises back to normal. A cycle is also completed when the cork moves from the crest of the wave down to the normal position, falls into the wave trough, rises back to normal, and continues rising to the top of the wave crest. Thus, a cycle is any complete sequence of amplitude variation in a repetitive series of wave movements.

c. Frequency. The frequency of a wave is measured by the number of cycles completed in 1 second. If two cycles are completed in 1 second, the wave frequency is two hertz (Hz). Since the number of hertz runs into high figures, radio frequencies are commonly expressed as kilohertz (1,000 hertz) or megahertz (1,000,000 hertz). Hertz is a unit of frequency equal to one cycle per second.

d. Wavelength. The linear distance of a cycle is known as the wavelength. In figure 15-1 the wavelength from A to E can be expressed in meters, feet, miles, or any other suitable linear measurement.

e. Amplitude. The amplitude of a wave is its magnitude measured from a specific reference level. In figure 15-1 the peak wave amplitude is represented by the lines BH, ID, or FJ; other amplitudes are shown as lines LM and NP. All representations were measured in linear distance above (+) or below (−) reference line AO.

15-3. Direct and Alternating Current

An electrical current flows by the movement of electrons through a conductor. Direct current (dc) flows in only one direction. An alternating current (ac) flows in one direction for a time and then flows in the opposite direction for the same length of time, with a continuous movement. An alternating current (fig 15-1) can be represented as a continuous flow of electrons with half of each cycle being negative and the other half being positive.

15-4. Radio Waves

An electrical current builds up a magnetic field around the conductor through which it flows. When alternating current flows through a wire, the magnetic field around the wire alternately builds up and collapses. An alternating current of high frequency is used to generate radio waves which are emitted during the build-up and collapse of the magnetic field around a conductor.
(the antenna). Radio frequencies extend from 10 kilohertz to above 300,000 megahertz.

15—5. Principles of the Transmitter

a. Generating and Transmitting a Radio Signal. Fundamentally, a radio signal is transmitted by generating an alternating electric current of the desired frequency and connecting it to an antenna suitable for radiating that particular wavelength (fig 15—2). The current frequency is determined by the number of times per second that the alternating current changes direction of flow in the antenna.

b. Altering the Radiated Signal. To transmit intelligible data, the radiated carrier wave (A, fig 15—3) is altered in some manner and these alterations are decoded at the receiver. Code is transmitted either by interrupting the carrier wave (B, fig 15—3) into a series of dots and dashes or by modulating the carrier wave with another steady tone (C, fig 15—3) which is interrupted to produce the desired code. Voice is transmitted by molding or modulating the carrier wave signal with audio wave transmissions (D, fig 15—3) generated through the radio microphone. The combined carrier wave and audio wave appear as in E, figure 15—3 if the audio wave is superimposed by amplitude modulation (AM) of the carrier wave. If the audio wave is superimposed by frequency modulation (FM), the combined wave will appear as shown in F of figure 15—3. Both AM and FM are used in transmitting voice to Army aircraft, but AM is the most common method. A modulated signal is commonly called a modulated carrier wave when either voice or tone signals are used in the modulation process (C, E, and F of fig 15—3 represent modulated carrier waves). Figure 15—2 illustrates voice modulation of a carrier wave.

15—6. Principles of the Receiver (Fig 15—4)

a. Tuning. Radio waves induce minute electrical currents in receiving antennas. This process is the same as inducing an alternating current in one conductor by placing it near another conductor carrying alternating current. The method of selecting the desired signal from the many induced signals is called tuning. The tuning circuit in the receiver is adjusted to resonance with the frequency of the desired signal; other frequencies are rejected by the tuning circuit. The selected frequency is unintelligible at this receiving stage since it is still a combination of the radio wave (carrier wave) and the audio wave (voice).

b. Demodulating. Another stage of the receiver called a demodulator or detector is used to separate the audio wave from the carrier wave. The audio portion of the wave is amplified and used to vibrate the diaphragm of the headset or a speaker. This vibrating surface causes audible sound waves, reproducing those which entered the microphone at the transmitter (fig 15—4).
A. CARRIER WAVE - continuous and unmodulated.

B. INTERRUPTED CARRIER WAVE - for transmitting code.

C. CONTINUOUS WAVE MODULATED WITH TONE SIGNAL - modulation is interrupted to create code.

D. AUDIO WAVE - continuous audible tone signal. When superimposed on carrier wave, the positive 180° increases the carrier wave amplitude and the negative 180° decreases the carrier wave amplitude (E below).

E. CARRIER WAVE (A above) with audio wave (D above) superimposed by amplitude modulation (AM).

F. CARRIER WAVE (A above) with audio wave (D above) superimposed by frequency modulation (FM).

Figure 15-3. Radio waves.
15—7. Classification of Frequencies

a. **Audio frequency (AF).** Twenty to 20,000 Hz (hertz).

b. **Radio frequency (RF).**
 1. Very low frequency (VLF), 10 to 30 kHz (kilohertz).
 2. Low frequency (LF), 30 to 300 kHz.
 3. Medium frequency (MF), 300 to 3,000 kHz.
 4. High frequency (HF), 3,000 to 30,000 kHz.
 5. Very high frequency (VHF), 30 to 300 MHz (megahertz).
 6. Ultrahigh frequency (UHF), 300 to 3,000 MHz.
 7. Superhigh frequency (SHF), 3,000 to 30,000 MHz.
 8. Extremely high frequency (EHF), 30,000 to 300,000 MHz.

Note. Although the Federal Communications Commission (FCC) designates 300 to 3,000 MHz as UHF, the UHF radio frequency band in aviation communication begins at 200 MHz.

15—8. Low Frequency Radio Wave Propagation (Nondirectional)

A radio wave leaves the transmitting antenna in all directions. That portion of the radiated wave following the ground is called the **ground wave** (fig 15-5). The ground wave is conducted along the Earth until its energy is absorbed (depleted by the attenuation process, para 15-10). The remainder of the radiated energy is called the **sky wave** (fig 15-5). The sky wave is radiated into space and would be lost were it not for the refracting layers in the atmosphere. These layers are in the region of the atmosphere called the **ionosphere** (region where air is ionized by radiation of the Sun). The refracting effect on the waves returns them to Earth and permits signals to be received at distant points. The effect on reception distance is determined by the height and density of the ionosphere and by the angle at which the radiated wave strikes the ionosphere. The ionosphere varies in height and density with the seasons, time of day, and latitude.

15—9. Skip Distance

The distance between the transmitting antenna and the point where the sky wave first returns to the ground is called the **skip distance** (AB, fig 15-5). By extension, this term also includes the distance between each surface reflection point in multihop transmission (BC, fig 15-5). The distance between the point where the ground wave can no longer be received and the point where the sky wave is returned is called the **skip zone.** Since solar radiation changes the position and density of the ionosphere, a great change in skip distance occurs at dawn and dusk, causing the fading of signals to be more prevalent than usual.
15-10. Effect of All Matter on Radiation

All matter within the universe has a varying degree of conductivity or resistance to radio waves. The Earth itself acts as the greatest resistor to radio waves. The part of the radiated energy that travels near the ground induces a voltage in the ground that subtracts energy from the wave. Therefore, the ground wave is attenuated (decreased in strength) as its distance from the antenna increases. The molecules of air, water, and dust in the atmosphere and matter at the Earth’s surface—such as trees, buildings, and mineral deposits—also absorb radiation energy in varying amounts.

15-11. Effect of Static Upon Low and Medium Frequency Reception

Static disturbance is either manmade or natural interference. Manmade interference is caused, for example, by an ordinary electric razor. Each small spark, whether originating at a spark plug, contact point, or brushes of an electric motor, is a source of radiation. All frequencies from 0 to approximately 50 MHz are transmitted from each spark and, consequently, add their energy to any radio reception within this frequency range. Natural static may be divided into two types. Interference which originates from natural sources away from the aircraft is called atmospheric static. Interference caused by electrostatic discharges from the aircraft is called precipitation or canopy static.

15-12. General Nature of High Frequency Propagation (3,000 kHz to 30 MHz)

The attenuation of the ground wave at frequencies above approximately 3,000 kHz is so great as to render the ground wave of little use for communication except at very short distances. The sky wave must be used, and since it reflects back and forth from sky to ground, communication can be maintained over a long distance (12,000 statute miles, for example). Frequencies between LF and VHF produce the greatest radio transmission range between points on the Earth because they are refracted by layers of the ionosphere and follow the curvature of the Earth. The range of low frequencies (LF) is reduced by attenuation and atmospheric absorption, and VHF or higher frequencies penetrate the ionosphere and escape to outer space.

15-13. General Nature of Very High Frequency (VHF) and Ultra High Frequency (UHF) Propagation (30 to 3,000 MHz)

Practically no ground wave propagation occurs at frequencies above approximately 30 MHz. Ordinarily there is little refraction from the ionosphere, so that communication is possible only if the transmitting and receiving antennas are raised far enough above the Earth’s surface to allow the use of a direct wave. This type of radiation is known as “line-of-sight” transmission.
Thus, VHF/UHF communication is dependent upon the position of the receiver in relation to the transmitter. When using airborne VHF/UHF equipment, it is of utmost importance for the aviator to be aware of the factors limiting his communication range.

15-14. Range of VHF and UHF Transmission

The range of VHF and UHF transmission is limited primarily by the altitude of the aircraft and the power of the station. Both VHF and UHF are line-of-sight transmissions, and at 1,000 feet above level terrain are usable for approximately 39 nautical miles. At higher altitudes, VHF and UHF transmissions can be received at greater distances as indicated below.

<table>
<thead>
<tr>
<th>Altitude above ground station (feet)</th>
<th>Reception distance (nautical miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,000</td>
<td>39</td>
</tr>
<tr>
<td>3,000</td>
<td>69</td>
</tr>
<tr>
<td>5,000</td>
<td>87</td>
</tr>
<tr>
<td>10,000</td>
<td>122</td>
</tr>
<tr>
<td>15,000</td>
<td>152</td>
</tr>
<tr>
<td>20,000</td>
<td>174</td>
</tr>
</tbody>
</table>
CHAPTER 16
VHF OMNIDIRECTIONAL RANGE SYSTEM (VOR)

Section 1. COMPONENTS AND OPERATION

16-1. General

The VHF omnidirectional range system (VOR) is the primary navigational system used by Army aviators in the United States. The VOR is a VHF facility which minimizes atmospheric static problems and provides 360 usable courses to or from the station. The terms omni and VOR are often used interchangeably.

16-2. Transmitter and Receiver Fundamentals

The transmitter emits two signals—the variable signal and the reference signal. The variable signal is transmitted in only one direction at any given time; however, the direction of its transmission varies so rapidly that the signal appears to be a continuous signal rotating clockwise around the station at approximately 1,800 rpm. Receivers which are correctly tuned to a station will receive both signals. The two signals are in phase only at magnetic north. At all other points around the station, there is a definite difference between the signals (fig 16-1). Receivers in the aircraft detect the phase difference and present the information to the aviator either by a centered indicator needle representing an on-course position or by a deflected needle to the right or left of center representing an off-course position. The signals may also be fed to a radio magnetic indicator (RMI) (fig 16-7) to show the magnetic direction to the transmitting station.

16-3. Army Receivers

The Army uses several different VOR receivers in its aircraft. Detailed information concerning the set installed in each aircraft, including a description of the set, and the operating instructions are contained in the operator’s manual.

16-4. VOR Course Indicators

The VOR navigation signal is displayed on an instrument called the course indicator. Several

Figure 16-1. VOR signal phase differences.
different types of course indicators are in use in Army aircraft. The most common are the ID-453 (fig 16-2), the ID-387 (fig 16-3), and the ID-1347 (fig 16-4). Detailed information concerning the course indicators installed in each aircraft is contained in the operator's manual.

a. Course Selector. The course selector knob or omni-bearing selector (OBS) is manually operated to select the course that is desired for VOR navigation. The course selector places the course arrow head (or pointer) or the course arrow tail (or ball) on the desired course (ID-453); or places the digits of the desired course in the course selector window (ID-387); or moves the course card to place the desired course number under the on-course index or reciprocal course index (ID-1347) (fig 16-5).

b. To-From Indicator. This indicator responds automatically to any course that is selected on the course indicator. It indicates whether the course selected, if flown, would take the aircraft to or away from the VOR station (fig 16-5). If the
Needle centered. When the aircraft is actually located on the selected course (aircraft A, B, and C, fig 16-6), the deviation needle is centered regardless of the aircraft heading.

(2) Full-scale needle deflection. If the aircraft is off the course by 10° or more on VOR (dashed radials, fig 16-6), the needle deflects full-scale to one side (aircraft D, fig 16-6). The course indicator face is graduated horizontally left and right from center with dots (course deviation scale) representing a deviation from course of 10° when using VOR and 2½° when using the ILS localizer.

Note. CDI displays, associated with the localizer of the Instrument Landing System (ILS), will be illustrated in chapter 20.

d. Course and Glide Slope Warning Flags. These warning flags are located in close proximity to the course deviation needle. There are two warning flags, one for the CDI (VOR or localizer) and the other for the glide slope. The flags are usually labeled "OFF". However, on some course indicators the warning flags may not be located near the respective needle and will be labeled "LOC" for localizer and "GS" for glide slope. Appearance of the warning flag indicates that the respective indicator (CDI or glide slope) is not receiving a signal strong enough to provide reliable information.

e. Glide Slope Indicator. The glide slope indicator needle indicates whether the aircraft is on the glidepath or is deviating above or below the glidepath. The course indicator face is graduated vertically up and down from center with dots (glide...
slope deviation scale) representing a deviation from the glidepath up to $\frac{1}{2}^\circ$. The glidepath indicator is only activated when the receiver is tuned to an Instrument Landing System (ILS) frequency. Glide slope indicator displays will be illustrated in chapter 20.

f. **Heading Pointer.** The heading pointer (ID-387), connected to the course set knob and the compass system, displays aircraft heading relative to the selected course. When the aircraft heading is the same as the course selected, the heading pointer indicates 0° heading deviation at the top of the course indicator. The heading deviation scales at the top and bottom of the course indicator are scaled in 5° increments up to 45°.

16-5. **Radio Magnetic Indicator (RMI)**

The radio magnetic indicator (fig 16-7) consists of a compass card, a heading index, and two bearing pointers. It enables the aviator to determine simultaneously the present magnetic heading of the aircraft, the direction to and from the navigation facility to which the number 1 bearing pointer is coupled and the direction to and from the navigation facility to which the number 2 bearing pointer is coupled.

a. **Compass Card.** The compass card is actuated by the aircraft's slaved gyro compass system (chap 2). When working properly, the card shows the magnetic heading under the heading index.

Note. A preflight cross-check of the compass card with a known heading (magnetic compass) should always be made.

b. **Number 1 and 2 Bearing Pointers.** These two bearing pointers are actuated by either the VOR, Tactical Air Navigation (TACAN), or ADF radio receivers.

Caution: Bearing pointers will not function in relation to the instrument landing system (ILS).

Each bearing pointer, when coupled to a navigation receiver, will indicate the direction to the navigation facility being received. Based on the number and type of receivers installed, there are several coupling arrangements possible. Normally the number 1 bearing pointer will be connected to the ADF receiver and the number 2 to the VOR receiver. Information or coupling arrangements
for specific aircraft types and models can be found in each aircraft operator's manual. A bearing pointer that can be coupled to either a VOR receiver or an ADF receiver will have this coupling accomplished by the position of the pointer function switch.

Section II. FLIGHT PROCEDURES USING THE VOR

16–6. General
VOR flight procedures using the course indicator and the radio magnetic indicator (RMI) will be discussed. When the aviator has both of these navigation instruments in operation, he may use the indications of either or both of these instruments to accomplish VOR flight procedures. Where the RMI is included in an illustration, the Number 2 bearing pointer will be coupled to the VOR receiver and will indicate the magnetic bearing to the VOR which is tuned in the receiver. The opposite end or tail of the needle will indicate the radial from the VOR station on which the aircraft is located. The Number 1 bearing pointer displayed in the figures of this chapter are nonfunctional.

16–7. Tuning
The set will be turned on and placed in operation in accordance with the instructions in the operator's manual for the aircraft. Place the desired VOR station frequency on the frequency selector dial. Positively identify the station by its repeated three-letter Morse Code group, or a three-letter Morse Code group alternating with a recorded voice identifier. If required, move the pointer function switch to the VOR position.

16–8. Orientation
a. Courses and Radials. The desired course is selected with the course selector (para 16–4a). The term radial refers to a course emanating from a VOR station. On navigation charts, courses are published as directions outbound from the VOR stations (radials). It is frequently convenient to refer to the position of an aircraft in terms of the radial on which it is located; for example, figure 16–8 shows three aircraft on the 090° radial. Aircraft A is on the 090° radial following a 270° course inbound to the station. Aircraft B is on the 090° radial following a 090° course outbound from the station. Aircraft C is crossing the 090° radial flying a heading of 320°. In each position the number 2 bearing pointer indicates the course to the VOR station and the opposite end of the needle indicates the radial.
b. **Orientation Procedure.** Without moving the course selector (unless TO or FROM is not indicated) visualize a line (red line, fig 16-9) drawn between the pointer and ball (ID-453) or visualize a compass rose on the face of the ID-387 and the ID-1347 with a line drawn from the course selected to its reciprocal. Then visualize a line drawn 90° through this course line (blue line, fig 16-9). Note position of the to-from indicator. In figure 16-9, there is a "TO" indication. This indicates that the aircraft is in the sector north of the blue line. Next, note the position of the course deviation needle. It is deflected to the right, indicating that the aircraft is east of the red line. Therefore, the aircraft is located in the quadrant between the 345° radial and the 075° radial. Now move the ball to the right within this quadrant until the course deviation needle centers. The position of the ball will indicate the radial that the aircraft is on. Another orientation method is as follows: Rotate the course selector until the to-from needle reads TO and the course deviation needle is centered. Now the course to the station is known. The reciprocal of this course is the radial upon which the aircraft is located. An alternate procedure is to center the course deviation needle with a FROM indication. Now the course away from the station is known. This course is also the radial upon which the aircraft is located. When a RMI is used with the VOR receiver, the above orientation procedures are not required. When the receiver is tuned to a VOR the bearing pointer of the RMI will indicate the magnetic heading to the station and the opposite end of the needle indicates the radial upon which the aircraft is located. The aviator is now oriented in relation to the VOR station.

16-9. **Maintaining a Course to a Station**

The procedures for maintaining a course to a station are illustrated in figure 16-10. The aircraft is maintaining a 360° course to the VOR station.

a. Position A. In position A, the aircraft is on course; the CDI needle is centered, the to-from

Figure 16-8. Relationship of aircraft positions as described by radial, course, or heading.

Figure 16-9. Use of course deviation indicator in orientation.
Figure 16-10. Maintaining a course to a station (VOR).
indicates TO and the bearing pointer indicates 360°.

b. Position B. In position B, the aircraft has been blown off course approximately 5°. The crosswind is from the left and the course deviation indicator is deflected to the left. The bearing pointer indicates 355°. To return to the course, the heading must be corrected to the left. The standard correction under normal wind conditions is 20° for aircraft with airspeed at or above 90 knots and 30° for aircraft operating below 90 knots.

c. Position C. In position C, a heading change of 20° is applied. The aircraft heading is now 340°.

d. Position D. In position D, the aircraft has returned to the course—the CDI needle has recentered. The bearing pointer again indicates 360°. If the present heading of 340° is maintained, the aircraft will fly through the course. If the aircraft is returned to the original heading of 360°, the aircraft will be blown off course again.

e. Trial Drift Correction. To avoid both situations, the heading is changed by turning toward the course by half the amount of the initial correction; i.e., turned toward the course 10° (15° if flying below 90 kt). The aircraft heading is now 350°. This results in the first trial drift correction for the crosswind. This drift correction may later prove to be either correct, too small, or too large.

(1) Correction too small. If the first trial drift correction (10°) is too small (wind is stronger than anticipated), the aircraft will again be blown off course from point E to point F (fig 16-11). The heading must again be changed to 340° (G, fig 16-11) in order to intercept the course. The aircraft intercepts the course at point H. A heading correction (I, fig 16-11) is made by turning toward the course 5° to a heading of 345°. (The aircraft is now using a total drift correction of 15°.) This bracketing procedure will be repeated as necessary until a heading is selected that maintains the aircraft on course.

(2) Correction too large. If the first trial drift correction (10°) is too large (wind not quite as strong as expected), the aircraft will fly off course upwind. In figure 16-12, the aircraft is over-correcting at point U and flies off course into the wind at point V. The aircraft is returned to the course by returning to a heading of 360° (point W) and allowing the wind to blow the aircraft back on course at point X. When back on course, a 5° drift correction (not as large as the initial correction) is applied into the wind (a 10° drift correction is applied for flying below 90 kt). The heading of the aircraft is now 355°. If this heading maintains the course, no further heading change is required.

(3) Correction for unusually strong wind. On some occasions, unusually strong winds will prevent the aircraft from returning to the course even when a 20° or 30° correction is used. If, after applying a 20° or 30° correction, the course is not reintercepted in a reasonable period of time, a correction of 40° or more may be required in order to return to the course. It must be assumed that if 40° is required to return to the course, approximately half of the correction (in this example 20°) may be required to stay on course.

Note. Course maintenance procedures discussed here are for guidance only; in flight, these procedures are refined to suit specific flight conditions.

16-10. Station Passage

Recognition of station passage is very important because VOR stations are used to fix an exact position. These stations are also used as holding points for air traffic control and are often the destination point of an IFR flight to be used during the instrument approach to the airfield. Station passage is determined as follows:

a. Since the approximate arrival time over a station is known, the aviator watches the clock and, as this time approaches, observes the reaction of the to-from indicator.

 (1) While inbound to the station, the indicator will read TO.

 (2) As the aircraft passes over the station, the to-from indicator will fluctuate momentarily, then indicate FROM. The time that this occurs is station passage time. Also, when flying over the station, fluctuations of the deviation needle and the momentary appearance of the warning flag will occur. At this time, station passage will also be indicated by the RMI bearing pointer moving to the reciprocal of the course.

b. If the flight is to be continued on the same course, the procedures for maintaining a course (para 16-9) should be followed. The only indicator change is the reversal of the to-from indicator and the reversal of the RMI bearing pointer. If there is a course change (fig 16-13), the course selector is set to the new course and the aircraft turned to a heading that will place it on the new course.

c. Figure 16-14 illustrates another important consideration when the to-from indicator reading changes. The aircraft is flying a heading of 045° (point A) but is not inbound on the selected course to the station of 045°. The aircraft continues on the same heading and flies past the station (point B). At the time the aircraft is abeam the station, the to-from indicator will momentarily have no indication, then will change to read FROM. This FROM reading will remain in the indicator as the aircraft flies away from the station (point C).
Figure 16-11. Trial drift correction too small (VOR).
Figure 16-12. Trial drift correction too large (VOR).
16–11. Position Fixing

a. The Victor (V) airways system (see note below) is based upon the operation of several hundred VOR stations and has, in addition to the stations themselves, numerous other flight checkpoints (intersections). An intersection is a point where two or more radials from different VOR stations intersect. Checkpoints can be established at these intersections for position fixing. The procedure for fixing position over intersections by using one VOR receiver (course selector reading FROM) is illustrated in figure 16-15.

Note. Established routes for the purpose of air route traffic control of en route instrument flight rules traffic have been designated and charted. These routes are called airways in the low altitude route structure (below 18,000 feet MSL) and jet routes in the high altitude route structure. Victor airways use VOR facilities and are labeled with a V and a number; i.e., V-241. The north-south airways have odd numbers and the east-west airways have even numbers. Jet routes are similar to airways except that they are labeled with a J and a number; i.e., J-80.

(1) The aircraft proceeds outbound (W, fig 16-15) from station A with the receiver tuned to station A. During this outbound flight, the correct heading for remaining on the course (090°) is determined by the procedures outlined in paragraph 16-9.

(2) After establishing the desired heading to remain on a 090° course, station B is tuned and identified.

(3) The 130° radial from station B crosses the 090° radial from station A to establish the intersection (open triangle symbol). The course selector is set on 130°, and since this is the radial from the station, the to-from indicator will read FROM (X, fig 16-15).

(4) At the time the aircraft is exactly over the intersection (Y, fig 16-15), the deviation indicator will center since the aircraft will then be on the 130° radial from station B. Also, the number 2 bearing pointer will indicate 310° at the intersection. After the intersection is determined, the course selector is reset to 090°, station A is tuned and identified, and course maintenance procedures resumed.

b. In performing the procedure discussed in a above, it is important to be able to interpret the direction of needle deflection. In the situation depicted in figure 16-15, the needle is deflected to the left while the aircraft is at point X. Prior to arrival at the intersection, the deviation indicator will be deflected to the same side on which the station is located if the course selector has been set on the published radial which causes the to-from indicator to read FROM.

c. It may be convenient or necessary to fix an intersection by setting the course selector for a TO reading, as illustrated in figure 16-16. In flying from station A to station B, the aircraft is to be turned inbound to station B when it arrives over the Gamma intersection.

(1) The aircraft departs station A outbound, with the course selector set on 010°, the deviation indicator centered (on course), and the to-from indicator reading FROM (W, fig 16-16).

(2) Prior to reaching the Gamma intersection, station B is tuned and identified (X, fig 16-16). The published radial for station B is 250°, but this radial is the direction outbound from B. Since it is desirable to go inbound, the course selector is set to 070°, the reciprocal of 250°. The resultant reading on the to-from indicator is TO because a
Figure 16–14. To–from indicator changes abeam the station.
course of 070° will take the aircraft to station B. Station B is to the right of the aircraft from point X to Gamma intersection, but the needle deflects to the left. Since the course selector is set on the reciprocal of the published radial to produce the TO reading in the to-from indicator, the needle deflects to the left. (Compare with the deflection described in b above.) The needle centers when the aircraft arrives over Gamma intersection (Y, fig 16-16), and remains centered inbound to station B (Z, fig 16-16) after the aircraft is placed on the 070° course.

d. If the aircraft in figures 16-15 and 16-16 were equipped with two VOR receivers, one would be tuned to station A to maintain the course and the other would be tuned to station B to determine the intersection.

16-12. Course Interception

It is occasionally necessary to intercept a course that is located at some distance from the position of the aircraft. Several procedures can be applied, as explained below.

a. From a Known Position—45° or 90° Interception. At point A, in figure 16-17, the aircraft is flying a heading of 350° while crossing the 200° radial. The aircraft has been cleared to intercept Victor airway 13 (V-13), which is the 180° radial from the station. Since the position of the 200° radial with respect to the 180° radial to be intercepted is known, proceed as follows:

1. Determine the direction of turn to intercept the 180° radial. This can be determined by setting the course arrow on the inbound course of
Figure 18-16. Position fixing at an intersection, course selector reading TO.
360°. This is the reciprocal of the published radial from the station (180°). With the course of 360° set in the course indicator, the deviation indicator will move to the right, indicating that the V-13 airway is to the right of the aircraft.

(2) Select a heading which will intercept the desired course at an angle of 45°. In this case, since the desired course to the station is 360°, a heading of 045° would intercept the course at a 45° angle.

Note. The standard interception angle is 45°; however, others may be used. If ATC requests the aviator to “expedite,” a 90° interception angle should be used.

(3) Turn to the selected heading and set the course arrow on the desired course—360°.

(4) Turn to the inbound heading of 360° when the course deviation indicator centers (B, fig 16-17). The bearing pointer of the RMI will indicate 360° at this time.

(5) Use course maintenance procedures to fly to the station on V-13.

(6) Procedure (2) above can be changed to intercept the track at a 90° angle (C, fig 16-17), if necessary, to reach the track in the least possible time.
b. From a Known Position—Double-the-Angle Interception. The double-the-angle method of intercepting a desired course from a known position consists of the following procedures (fig 16-18).

(1) Determine the angular difference between the radial on which the aircraft is presently located and the radial which represents the desired course. At point A of figure 16-18, the aircraft is on the 150° radial and the desired course to the station is 360°. (This is the 180° radial, so the angular difference is 30°.)

(2) Double the angular difference and this will give a desirable interception angle. In this case, the interception angle will be 60°.

Note. When using this procedure, initial interception angles of less than 20° are usually not practical. Also, an interception angle of 90° is the maximum; thus, an angle greater than 45° would not be doubled.

(3) Select the heading which will cause the aircraft to intercept the desired course at the desired interception angle. In this case, a heading of 300° will intercept the 360° course at the desired 60° angle.

(4) Turn the aircraft to the selected heading and reset the course selector for the 360° course.

(5) At the time the deviation indicator centers (B, fig 16-18), the aircraft has reached the course. The bearing pointer of the RMI will indicate 360°.

Note. When using this technique, the leg flown to intercept (from point A to point B) is equal in length to the leg remaining to the station (from point B to the station). Consequently, the time required to fly the interception leg (point A to point B) is the approximate time remaining to fly to the station from point B.

c. Leading the Needle. If the turn onto the intercepted course is delayed until the deviation needle is fully centered, there is the risk of overshooting the course. If the turn to the heading of the course is started too soon, the aircraft may roll out of the turn short of the course. During initial course interception or reinterception, the technique of leading the deviation indicator must be used. The rate of movement of the deviation indicator and the size (degree) of the interception angle must be considered in determining when to start the turn in order to place the aircraft on the course.

d. Interception of a Course From an Unknown Position. The requirement exists to intercept a specific course, at a time when it is uncertain
which radial the aircraft is positioned on. A simple method to become oriented with respect to a desired track is as follows:

1. From the present heading of the aircraft, turn the shortest way to a heading which is parallel to either the course heading or its reciprocal. (The station has previously been tuned and identified.)

2. While turning ((1) above), set the course selector to the course or its reciprocal depending upon which heading the aircraft is flying.

3. After rolling out of the turn ((1) above), observe the deflection of the deviation indicator. The course lies to the same side as the indicator is deflected. The to-from indicator will now indicate if the station is ahead or behind the aircraft.

4. Turn toward the course to a heading which will intercept the course at an appropriate angle.

Note. This procedure is true only when the heading of the aircraft is within 90° of the course indicated by the course arrow.

16-13. Estimating Time and Distance to a Station

a. In most situations, an aircraft will be flying in a region where two VOR stations are within reception distance. The position of the aircraft and an estimate of time and distance to either station may be determined by plotting the course or bearing to each station on a navigation chart. The aircraft will be located at the position where the courses or bearings cross.

b. In some isolated cases, it may be necessary to estimate the time or distance to a station by using the signal from a single station. One technique of doing this is pointed out in the note in paragraph 16-12b.

c. A different method is illustrated in figure 16-19. The aircraft is inbound to the station on the 290° radial. To estimate the time and distance to this station, proceed as follows (fig 16-19):

1. Turn the aircraft through 80° (left in fig 16-19).

2. Move the course selector 10° (from 020° at point A to 030° at point B) to a known radial ahead of the aircraft.

3. Wait for the deviation indicator to center and take a time check (e.g., 1412:50).

4. Move the course selector an additional 10° (from 030° at point B to 040° at point C).

5. Wait for the deviation indicator to center and take a second time check (e.g., 1414:55, or 2 minutes and 5 seconds elapsed during the 10° bearing change).

6. Turn inbound to the station (D) and estimate the time to the station by applying the following formula (data taken from situation in fig 16-19):

\[
\text{Time Remaining to Station} = \frac{\text{Minutes Flown} \times 60}{\text{Degree Change}} - \frac{\text{Seconds Flown}}{\text{Degree Change}}
\]

\[
\text{Time Remaining to Station} = \frac{2 1/12 \times 60}{10°} = \frac{125 \text{ Seconds}}{10°} = 12.5 \text{ Minutes}.
\]

Note. If aircraft is turned 80° right ((1) above), move course selector from 020° to 010° in (2) above and from 010° to 360° in (4) above.

7. The approximate distance to the station may be estimated by using the following formula:

\[
\text{Distance to Station} = \frac{\text{True Airspeed} \times \text{Minutes Flown}}{\text{Degree Change}}
\]

8. Substituting the data from figure 16-19 (assume the TAS is 120 K)—

\[
\text{Distance to Station} = \frac{120 \times 2 1/12}{10} = 25 \text{ Nautical Miles}
\]

Note. Seconds must be changed to fractional or decimal parts of a minute.

d. The following limiting factors should be kept in mind when applying the above time and distance formulas:

1. They are based on the assumption that a 1° angle is 1 mile wide 60 miles away from the station. This is an approximation.

2. They do not take into account wind conditions that may cause groundspeeds to vary considerably on headings which differ by 90°.

3. To determine time-distance required, the aircraft must turn so that it will fly abeam the station during the time required for the aircraft to fly through a 10° change in the course selector reading.

4. The bearing change (change in the course selector setting) selected may vary from 5° to 15°. Ten degrees is used as a mathematical convenience in the above problems.
Figure 16-18. Estimating time and distance (VOR).
Section III. RECEIVER CHECKS

16—14 General
VOR receivers and their associated indicators (e.g., ID-453) must be checked periodically for accuracy. There are several types of checks which can be performed to insure equipment accuracy. In performing these checks, current data for designated station frequencies, specific VOR radials, and station identifications are contained in current navigational publications.

16—15. Radiated Test Signal
Equipment installed at many airports transmits a continuous test signal receivable at any point on the airport. Although designed primarily as a ground test system, this equipment is also usable at relatively low altitudes in flight over the airport. The procedure for using the radiated test signal (VOT) to check receivers is as follows:

a. Tune the frequency of the VOT.

b. Listen for the proper identification; i.e., either a continuous series of dots or a continuous 1,020-cycle tone.

c. Check for the disappearance of the warning flag.

d. Set the course to either 180° or 360°.

e. Check the reaction of the to-from indicator. If the course arrow is set on 180°, the indicator should read TO. If the course arrow is set on 360°, the indicator should read FROM.

f. Check the course deviation indicator. It should be centered. If the needle is not centered, rotate the course selector until the indicator centers. If the course selector does not have to be rotated more than 4° in order to center the needle, the equipment is within tolerance for flight under instrument flight rules (IFR). If the needle will not center within a 4° tolerance, the equipment is unreliable for flight under IFR. Equipment that does not meet these tolerance limits is unreliable for flight under IFR.

16—16. Other Ground Checks
Not all airports have equipment for radiated test signals (VOT's) or other ground check radials have not been established, an airborne check radial may exist. Airborne checks are performed like ground checks except that an airborne checkpoint is specified instead of a designated spot at the airport. For example, if a prominent water tower exists within a few miles of the VOR station, a certain radial can be selected which passes over this tower. As the aircraft flies over the tower, the accuracy of the equipment can be checked. A published airborne check over the tower may appear in navigational publications as: "DALLAS, TEXAS (Love Field)—213°, over striped water tower on Loop 12 (Highway) approximately 2.6 miles east-northeast of Love Field."

b. To perform the airborne check—

(1) Tune and identify the Dallas, Texas VOR.
(2) Set the course on 213° and check for a FROM reading.

(3) Fly over the water tower described.

(4) When over the water tower, check the deviation indicator for a centered position with a TO indication. If the needle is within 6° of center, or if a course selector movement of 6° or less from the published radial will cause the needle to center, the equipment is within tolerance. Equipment that does not meet these tolerance limits should not be used for flight under IFR.

16—18. Dual VOR Receivers

If an aircraft is equipped with dual receivers, one receiver may be checked against the other. If receivers are within 4° of each other, both may be considered reliable. To perform this check—

a. Tune and identify the same VOR station with both VOR receivers.

b. Using dual course indicators (ID-453 or equivalent), rotate the course selectors of each until the deviation indicator is centered.

c. Check to determine that the to-from indicators on each instrument are in agreement.

d. Check the course settings. These settings must be within 4° of each other. If receivers do not meet these limits, one or both are unreliable. Each will have to be checked with a VOT or a ground check point to determine if it is within the allowable tolerance for flight under IFR.

16—19. Unpublished Receiver Check

In a location where no receiver checks are published, a checkpoint from a nearby VOR station may be established. To accomplish an unpublished receiver check—

a. Select a VOR radial that lies along the center-line of an established VOR airway.

b. Select a prominent ground point along the selected radial preferably more than 20 nautical miles from the VOR ground facility, and maneuver the aircraft directly over the checkpoint at a reasonably low altitude.

c. Note the VOR course indicated by the receiver when over the ground point. (The maximum permissible variation between the published radial and the indicated course is 6°.)

16—20. Course Deviation Indicator Sensitivity Check

At the same time that the VOR receiver is checked for accuracy, the deviation indicator can be checked for sensitivity. The face of the course indicator (ID-453) (fig 16-21) is graduated in 2° intervals. Moving from center to either side, the edge of the small circle is 2° and each dot (aligned horizontally) represents 2°. When the deviation indicator is fully deflected to one side, the aircraft is off the selected course by at least 10°. Consequently, if the receiver is checked for a centered indicator with the course selector set on a given radial—for example 140° (A, fig 16-21)—a full swing of the indicator can be checked by setting the course selector on 130° (B, fig 16-21) and then on 150° (C, fig 16-21). Normally, a ten degree change in the course selector setting will cause a full scale movement of the course deviation indicator. However, in all cases a full scale swing (10 degrees) should require no more than an 8- to 12-degree movement of the course selector.

Note. Pertinent information for VOR receiver checks should be verified from current navigational publications and regulations. This information is subject to change.

Section IV. VOR STATION CLASSIFICATION

16—21. Classification by General Types

The classes of VOR stations are—

a. T (Terminal). (T) VOR

b. L (Low Altitude). (L) VOR

c. H (High Altitude). (H) VOR
Classification by Reception Capabilities

Stations are also classified by their interference-free reception capabilities with respect to distance and altitude. This classification is the basis for establishing the interference-free reception range of transmitter frequencies. The following data shows station classification with normal usable radial distances and altitudes:

<table>
<thead>
<tr>
<th>Classification</th>
<th>Altitudes</th>
<th>Distances (NM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>12,000 ft and below</td>
<td>25</td>
</tr>
<tr>
<td>L</td>
<td>Below 18,000 ft</td>
<td>40</td>
</tr>
<tr>
<td>H</td>
<td>Below 18,000 ft</td>
<td>40</td>
</tr>
<tr>
<td>H</td>
<td>14,500 ft-17,999 ft</td>
<td>100*</td>
</tr>
<tr>
<td>H</td>
<td>18,000 ft-FL 450</td>
<td>130</td>
</tr>
<tr>
<td>H</td>
<td>Above FL 450</td>
<td>100</td>
</tr>
</tbody>
</table>

*Applicable only within the conterminous United States.

Note. Classification of stations is subject to change. Current operational publications should be consulted for latest information.
CHAPTER 17

ADF AND MANUAL LOOP PROCEDURES

Section I. CHARACTERISTICS AND COMPONENTS

17-1. General

The radio direction finder (RDF), sometimes referred to as a radio compass, is a radio receiver used to determine the bearing to a radio transmitter from the aircraft. This receiver has a loop antenna that is used to determine this bearing. When the loop antenna is placed in the signal pattern of a radio transmitter, no signal will be heard when the plane of the loop is perpendicular to a line from the aircraft to the transmitter. This position of the loop is called the null. Navigation with the radio direction finder uses the null for determining the direction to the transmitting facility. This can be done manually by using automatic direction finder (ADF) procedures (para 17-4 through 17-21) or loop procedures (para 17-22 through 17-26).

17-2. Army Receivers

The Army uses several different receivers, usually referred to as ADF receivers, for radio direction finding. The frequency spectrum of these receivers is from .19 MHz (190 kHz) to 1.75 MHz (1750 kHz). In this frequency range are the nondirectional radio beacon (NDB) and the low/medium frequency (L/MF) radio ranges. Their classification and usable radii are as follows:

<table>
<thead>
<tr>
<th>Nondirectional Radio Beacon (NDB)</th>
<th>Usable Radii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>Power (watts)</td>
</tr>
<tr>
<td>(L) Compass Locator</td>
<td>Under 25</td>
</tr>
<tr>
<td>MH</td>
<td>Under 50</td>
</tr>
<tr>
<td>H</td>
<td>50—1999</td>
</tr>
<tr>
<td>HH</td>
<td>2000 or more</td>
</tr>
</tbody>
</table>

Note. Service range of individual facilities will be less than stated when flight is conducted at low altitudes.

For navigating by RDF it is best to use nondirectional radio beacons. These beacons are listed in FLIP publications and are designated on air navigation charts. They are designed and maintained for air navigation. For best results they should be used only within the usable distances as listed in the chart above. If the airborne RDF receiver and associated equipment are not operating at their optimum level, the usable distances may be further reduced. Radio beacons are sometimes subject to fading signals and signal interference from distant stations at night. During periods of thunderstorm activity the aviator may find that atmospheric static will interfere with tuning and identifying a radio beacon and will cause erratic operation of the bearing needle. Commercial broadcast stations should be used only if an NDB is not available. These stations have irregular hours of operation, do not broadcast their identification at frequent or regular intervals, are subject to signal interference from other stations, and frequently have highly directional signal patterns that may cause unreliable indications while using ADF procedures. If a commercial broadcast station must be used, select a station that is designated on an air navigation chart.

17-3. ADF Receiver Components

Components of an ADF receiver are:

a. The receiver.
b. A loop antenna.
c. A sensing antenna.
d. The radio control panel.
e. The indicator, which is used to solve RDF problems for navigational purposes. The most commonly used indicator, the radio magnetic indicator (RMI) (fig 16-7), has a rotating compass card that displays the magnetic heading of the aircraft under the index at the top of the dial and needles or bearing pointers. When the signal from an ADF receiver is switched to one of these needles, it will align itself on a heading on the compass card corresponding to the magnetic course to the station being received.

Section II. AUTOMATIC DIRECTION FINDER FLIGHT PROCEDURES

17-4. Orientation Procedure

Set the RMI function switch to the ADF position. This will cause the number 1 bearing pointer to respond to the signals from the ADF receiver. Tune the receiver and identify the desired radio station. Insure that the receiver is tuned to
Figure 17-1. Homing (ADF).
Figure 17-3. Maintaining a course to a station (ADF).
receive the strongest signal possible. This is accomplished by adjusting a tuning meter to its greatest sensitivity or by determining the best audio signal with the ear. Weak reception or off frequency tuning of the signal will cause the bearing pointer to fluctuate or indicate an incorrect magnetic bearing to the station. Correct tuning of the receiver may be made difficult by atmospheric static being received. By switching to the antenna (ANT) position on the receiver, a clearer signal can be received for tuning using the audio signal. The tuning meter does not operate in the ANT position. When using this procedure, be sure and switch back to COMP/ADF position after tuning is completed. The response of the bearing pointer to the signal may be tested by moving it left or right on the RMI with the LOOP switch to determine if it will return to the original bearing when the LOOP switch is released. After tuning the radio receiver and identifying the station, ascertain that the function switch on the radio control panel is in the COMP/ADF position and that the RMI function switch is in the ADF position. If the ADF is being used as the primary means of navigation, the receiver volume should be adjusted so that the signal is just barely audible. If during flight the signal is no longer heard, the aviator is alerted to possible failure of the receiver. The receiver itself and the RMI have no warning devices to indicate failure of the receiver. The bearing pointer may remain in what appears to be a normal operating position and a failure is not detected until changing the desired course. During flight in heavy precipitation or near a thunderstorm where lightning is occurring, the indications of the bearing pointer may become so erratic that accurate navigation cannot be accomplished. If the flight is being conducted under instrument flight rules, the air traffic controller should be advised that the flight cannot be continued using the ADF receiver as the primary means of navigation. The bearing pointer always indicates the magnetic bearing to the station. If the requirement exists to proceed to the radio station, the aircraft should be turned toward the bearing pointer until it is aligned with the index at the top of the RMI. The aviator can use "homing" procedures to the station by keeping the bearing pointer aligned with the index or can track to the station along a desired course, applying wind drift corrections. Using homing, the aircraft will fly a curved track to the station if any crosswind exists (fig 17-1). When maintaining a desired course, the aircraft's ground track to the station will be a straight line (fig 17-2). Air traffic control (ATC) clearances that specify "direct" to a named radio facility require that a direct course be maintained to that facility.

17-5. Maintaining a Course to a Station
The procedures for maintaining a course to a station are illustrated in figure 17-2.

a. Position A. At position A, the aircraft is on course with the bearing pointer aligned with the heading index and the magnetic course of 350°.

b. Position B. At position B, the bearing pointer is deflected 5° to the left of the course, indicating that the aircraft has been blown to the right of course. To return to the course a drift correction must be applied to the left of the aircraft heading. This initial correction should be 20° for aircraft flying an airspeed of 90 knots or above and 30° for aircraft flying at airspeeds below 90 knots. If these corrections do not readily bring the aircraft back to course, larger corrections may be used.

c. Position C. At position C, 20° left correction has been applied to a heading of 330°. The bearing pointer will continue to indicate 5° left drift throughout the turn.

d. Position D. At position D, the aircraft has returned to course and the bearing pointer indicates the magnetic heading of the desired course.

e. Position E. At position E, the heading of the aircraft is 340°. One-half of the drift correction has been removed. This heading should compensate for the wind effect and allow the aircraft to remain on course. If this correction is too much the aircraft will fly off course to the left. To correct for this condition, return the aircraft to the heading of the desired course and allow the aircraft to drift back on course (bearing pointer reads 350°). When on course apply less drift correction than before and determine if the aircraft will remain on course. These procedures will be followed until a heading has been determined that will maintain the aircraft on course.

17-6. Station Passage
Passage of the station will be indicated by the bearing pointer moving from the magnetic heading of the course to a magnetic heading which is the reciprocal of the course. If the aircraft passes directly over the station the bearing pointer will rapidly reverse its position as stated above. If the aircraft passes to one side of the station the bearing pointer will move more slowly and give an indication on which side the station is being passed. As the aircraft passes the station the bearing pointer will move to a magnetic bearing which is somewhere near the reciprocal of the course. For timing purposes, station passage occurs when the bearing pointer passes through a position 90° to the desired course.
17-7. Maintaining a Course From a Station

When maintaining a course from a station the bearing pointer will be indicating a magnetic bearing which is the reciprocal of the course. This indicates that the aircraft is flying away from the station. If the bearing pointer later begins to point to a magnetic bearing which is to the left of the course reciprocal the aircraft has been blown to the right of the course by the wind. The aircraft can then be returned to the course and the course maintained by using the procedures described in paragraph 17-5. The tail of the bearing pointer may be used to determine the position of the aircraft in relation to the desired course; however, it is nondirectional and corrections must be made in the opposite direction to the tail of the needle.

17-8. Position Fixing

While maintaining a course, a requirement may exist to determine a fix which is located along that course. This may be an intersection on an airway chart, an approach chart, or some point along the course requested to be identified by ATC. When another navigational receiver, VOR or ILS, is being used to maintain the desired course, the ADF receiver may be tuned to the L/MF station from which the reporting point is to be identified. In figure 17-3 the aircraft is maintaining a course of 090°. The fix is formed by a course to the beacon of 120° and the present course of 090°. When the bearing pointer indicates a magnetic bearing of 120°, the aircraft is over the fix. For position fixing when the ADF is being used to maintain a course, two ADF receivers are required or alternate tuning of the one receiver from one station to the other is required. This procedure is necessary to insure that the aircraft does not drift off course while identifying the fix.

17-9. Course Interception Inbound

Course interceptions inbound to a station are illustrated in figure 17-4. At point A the aircraft is maintaining a course of 050° to the beacon. A requirement arises to intercept and track inbound on a course of 080°. The aviator can either visualize that the 080° course is to the left or use the parallel method of determining the position of the aircraft in relation to the 080° course. Using the

Figure 17-3. Position fixing (ADF).
parallel method, the aircraft is turned to a heading of 080°. The bearing pointer is observed to the left of the aircraft heading. This means that the 080° course is to the left. The standard interception angle (45°) is applied and a left turn to a heading of 035° is made. A smaller interception angle may be used if the difference between the present course and the desired course is 20° or less or when the position of the aircraft is known to be close to the station. When these conditions exist,

(1) INBOUND WITH STATION 45° RIGHT OF NOSE AT TIME OF TRACK INTERCEPTION. HEADING (035°) PLUS INTERCEPTION ANGLE (045°) EQUALS DESIRED INBOUND TRACK (080°).

Figure 17-4. Course interception inbound (ADF).
the intercept angle should be double the difference between the courses so as to insure course interception without delay. When the bearing pointer approaches the bearing of 080°, a turn to this heading should be made, adjusting the degree of bank so as to roll out on the inbound course (point B). Determination of when to start this turn will be based on the following factors:

a. Movement Speed of the Bearing Pointer. A rapid movement of the bearing pointer means that the aircraft is close to the beacon, and the turn must be begun prior to the bearing pointer reaching the desired course. A delay will result in overshooting the desired course. A slow movement of the needle requires that the turn to course be delayed until the bearing pointer is close to the desired course.

b. Speed of the Aircraft. The speed of the aircraft requires that the turn be delayed or started sooner to avoid overshooting or undershooting the desired course.

c. Angle of Intercept. Large angles of intercept require that the turn be started earlier than for small angles. Once the aircraft has rolled out of the turn, the procedures for maintaining a course as outlined in paragraph 17–5 will be followed.

17–10. Course Interception Outbound

In figure 17–5, an aircraft at point A is maintaining a course of 230° from a beacon. The requirement arises to intercept and maintain a course of 260° from the beacon. Either the visualization or the parallel method discussed in paragraph 17–9 can be used to determine the direction of turn to intercept the desired track. If the parallel method is used, the aircraft is turned to a heading of 260°. The bearing pointer indicates to the right of the reciprocal of the desired course (080°). To intercept the 260° course, the aircraft is turned to a heading of 305° (45° intercept angle). When the bearing pointer approaches the reciprocal of the course (bearing of 080°), a turn is begun to roll out on the 260° course from the beacon (point B). Determination of when to start this turn may be made using the factors set forth in paragraph 17–9. After the turn has been completed the procedures for maintaining a course, as outlined in paragraph 17–5, will be followed.
17—11. Determination of Time and Distance From a Station (ADF)

To compute the time and distance to a L/MF station, tune and identify the station and turn the aircraft until the bearing pointer is displaced 90° to the aircraft heading (90° index of the RMI). Note the time and maintain this heading. When the bearing pointer moves 10° from the 9° index, note the time that has elapsed and apply the following formulas:

\[
\frac{\text{Time in seconds between bearings}}{\text{Degree of bearing change}} = \text{Time in minutes from the station}
\]

Example:

\[
\frac{120 \text{ seconds}}{10°} = 12 \text{ minutes from the station}
\]

\[
\times \text{True airspeed} \times \frac{60}{\text{minutes from the station}} = \text{nautical miles from the station}
\]

If known, groundspeed should be substituted for TAS.

\[
\frac{120 \text{ kts}}{60} \times 12 = 24 \text{ NM from the station}
\]

Section III. AUTOMATIC DIRECTION FINDER FLIGHT PROCEDURES USING RELATIVE BEARINGS

17—12. Relative Bearing

When the slaved gyro compass of the RMI system fails and the L/MF radio station is the only navigational aid available, ADF procedures using relative bearings must be used. For the purpose of this discussion, it will be assumed that the compass card remains motionless (referred to as "fixed card") with the figure of 060° under the index at the top of the RMI. The position of the bearing pointer will no longer indicate a magnetic bearing. The indication of the bearing pointer will be read in relation to the index at the top of the RMI. The index represents the nose of the aircraft. For this reason, the bearing is called a relative bearing. The relative bearing to the L/MF station is measured clockwise from the nose of the aircraft to the position of the bearing pointer. Although usually referred to as a relative bearing, the position of the bearing pointer may be referred to as being so many degrees left or right of the nose. For example, a relative bearing of 270° may be referred to as a bearing of 90° left of the nose of the aircraft. In figure 17-6, the relative bearing to the beacon at positions A, B, and C is 060°, i.e., the beacon is 60° right of the nose of the aircraft. To determine the magnetic course to the beacon from each position, add 60° to the magnetic heading of the aircraft as read from the magnetic compass.

17—13. Orientation (Fixed Card)

The procedure for ADF orientation using relative bearings is as follows:

a. Tune and identify the station.

b. From the RMI, determine the number of degrees the bearing pointer is deflected to the right or to the left of the nose of the aircraft.

c. If the bearing is to the right of the nose, add the number of degrees determined in b above to the aircraft heading to determine the magnetic course to the station. If the bearing is to the left of the nose, subtract the number of degrees determined in b above from the aircraft heading to determine the magnetic course to the station.

17—14. Homing to a Station (Fixed Card)

Homing when using relative bearings is done in the same manner as described in paragraph 17—4. Turn the aircraft until the bearing pointer is aligned with the index at the top of the RMI. Fly to the station by turning the aircraft as necessary to keep the bearing pointer on the nose of the aircraft.

17—15. Station Passage (Fixed Card)

Station passage is indicated by a movement of the bearing pointer from its position at the index at the top of the RMI (if homing) or from its position at or near that index (if maintaining a course) to the reciprocal of that position.

17—16. Maintaining a Course to a Station (Fixed Card)

Figure 17-7 depicts the procedure for maintaining the course to a station using relative bearings.

a. **Point A.** The aircraft is inbound to the station on a course of 350°, the heading is 350°, and the bearing pointer is indicating a 0° relative bearing.

b. **Point B.** Wind from the left has caused the aircraft to drift off course to the right. The bearing pointer indicates a 5° bearing to the left of the nose. The course is now 5° to the left.
c. **Point C.** To return to the course, 20° of left correction must be applied. The new heading is 330°. The bearing pointer indicates a bearing of 015° to the right of the nose of the aircraft.

d. **Point D.** The aircraft has returned to the course when the bearing pointer indicates a bearing of 20° to the right of the nose.

e. **Point E.** The aircraft is turned right to a heading of 340° (drift correction of 10° has been applied). (The bearing pointer indicates 10° has been applied.) The bearing pointer indicates 10° to the right of the nose. If the bearing pointer remains in this position, the drift correction is sufficient and the aircraft will remain on course. If not, further corrections to course will have to be made and different drift corrections must be applied until the course is maintained.

17-17. **Maintaining a Course From a Station (Fixed Card)**

Procedures for maintaining a course outbound are illustrated in figure 17-8.

a. **Point A.** The aircraft is outbound from the station on a course of 350°, the aircraft heading is 350°, and the bearing pointer is indicating a relative bearing of 180° from the nose of the aircraft (on the lower heading index of the RMI, considered as the tail of the aircraft).

b. **Point B.** Wind from the left of the course has caused the aircraft to drift to the right of the course. The bearing pointer indicates a position 5° to the left of the tail or lower index on the RMI.

c. **Point C.** A 20° heading change to the left is
applied. The heading is 330°. The bearing pointer indicates a bearing of 25° to the left of the tail.

d. Point D. The aircraft has returned to the course when the bearing pointer indicates a bearing of 20° to the left of the tail.

e. Point E. The aircraft is turned to a heading of 340° (drift correction of 10° has been applied). The bearing pointer indicates a bearing of 10° to the left of the tail. If this drift correction is sufficient, the bearing pointer will remain in this position and the aircraft will remain on course. If not, further corrections to course will have to be made and different drift corrections will have to be applied until the course is maintained.

Note. Maintaining a course from a station can also be accomplished using the tail of the bearing pointer; however, the tail of the bearing pointer is nondirectional and corrections must be made in the opposite direction to the tail of the bearing pointer.
17–18. Position Fixing (Fixed Card)

The procedures for determining a fix are illustrated in figure 17-9. The aircraft is maintaining a course of 090°. The ADF receiver is tuned to the beacon. A fix must be identified where the 120° course to the beacon crosses the 090° course. The aircraft will be at this position when the bearing pointer indicates 30° to the right of the nose.

\[120° - 90° = 30°\]

When drift correction is required to maintain a course, the heading of the aircraft will always be used to determine the relative bearing to a fix. Example: The heading of the aircraft is 080° (10° drift correction to the left) and is maintaining a 090° course. When the fix is reached, the bearing pointer will indicate a position of 40° to the right of the nose.

\[120° - 80° = 40°\]

In the same example, a 10° right drift correction will result in the bearing pointer indicating 20° right of the nose at the fix.

\[120° - 100° = 20°\]
17–19. Course Interception Inbound (Fixed Card).

The procedures for course interception to a station are illustrated in figure 17-10.

a. Point A. At point A, the aircraft is inbound to a beacon on a course of 050°. The aircraft heading is 050° and the bearing pointer is indicating a 0° relative bearing. The requirement exists to intercept a course of 80° to the beacon. The 80° course can be visualized as being to the left or can be determined by turning the aircraft parallel to a heading of 080° and noting that the bearing pointer is indicating a bearing to the left of the nose. Since there is a 30° difference between the two courses a 45° intercept angle is applied. The aircraft is turned left to a heading of 035°.

b. Point B. At point B, the aircraft has intercepted the 080° course. The bearing pointer indicates a bearing of 045° to the right of the nose of the aircraft. The turn to course must be started before the bearing pointer reaches the 045° bearing. (See paragraph 17–9 for a discussion of how to plan a turn to intercept a course.)

17–20. Course Interception Outbound (Fixed Card)

The interception of a course from a station is illustrated in figure 17-11.

a. Point A. At point A, the aircraft is maintaining a course of 270° from the station. The aircraft heading is 270° and the bearing pointer is indicating a relative bearing of 180°. The requirement exists to intercept a course of 300° from the station. The parallel or visual method can be used to determine the direction of the 300° course from the 270° course. On a heading of 300° the bearing pointer will indicate to the right of 240° or tail of the aircraft. The 300° course is to the right of the present position of the aircraft. To intercept the desired course of 300° the aircraft must be turned to the right to a heading of 345° (300° course + 45° intercept angle).

b. Point B. At point B, the aircraft has intercepted the 300° course. The bearing pointer indicates a bearing of 045° to the right of the 180° index or tail of the aircraft. The turn to course must be started prior to the bearing pointer.
reaching the 045° bearing. (See paragraph 17–9 for a discussion of how to plan to intercept a course.)

17–21. Determination of Time and Distance From a Station (Fixed Card)

The procedures for determining the time and distance from a station using a fixed compass card are the same as those set forth in paragraph 17–11.
Section IV. MANUAL (LOOP) OPERATION OF THE ARN–59

17–22. General

a. Selection of Mode of Operation. The radio compass may be operated manually for navigational use with the selector switch in the LOOP position. Manual operation may be necessary when the signal or indicator readings received in the COMP position are unreliable. Navigational procedures are the same in the LOOP position as when using the COMP position; however, the azimuth indicator is positioned manually by the loop drive switch to locate the null by sound. If the switch is moved to the right, the indicator arrow moves to the right (clockwise); if the switch is moved to the left, the indicator moves to the left (counterclockwise). An aural null (minimum reception) results when the plane of the loop antenna is perpendicular to a line from the beacon.

b. Beat Frequency Oscillator (BFO). Certain types of radio beacons transmit an interrupted but unmodulated radio carrier wave which is inaudible unless the BFO switch is turned on. The beat frequency oscillator (on some ADF receivers the “BFO” switch is labeled “CW”) converts the inaudible carrier wave into an audible sound. Other radio beacons transmit a continuous repetition of the identifier code or transmit a tone interrupted at intervals by the identifier code. These beacons are difficult to identify in manual loop operation unless the BFO is turned to the ON position. The BFO will combine with the incoming
signal and produce a continuous audible tone. This will aid in determining the null by insuring a better signal. Therefore, the BFO switch must be on during all manual loop operations.

17-23. Orientation

Orientation procedures used in determining the direction to the radio transmitter are explained below.

a. Tune and identify the radio beacon in the ANT position. If it is difficult to identify the beacon, switch to LOOP position and listen for the identifier. If it is not heard, rotate the loop with the loop drive switch until the identifier is heard. (The loop may have been in the null position when the receiver was switched to LOOP.) The reception of the station being tuned may be improved by turning on the BFO switch. Best reception is attained by moving the tuning dial slowly back and forth over the station frequency until the position is located where the highest pitched tone is heard. The monotone or aural signal caused by the BFO will be heard on either side of the highest tone.

b. Move the selector switch to LOOP if the selector switch is not already positioned in this mode.

c. Move the loop drive switch and listen to the signal. At some point the signal will fade; this is the null position. As the aviator rotates the azimuth indicator, the signal will build on each side of the null position. Ideally, the null should be no more than 5° wide on the face of the azimuth indicator. For example, if the signal begins to fade when the indicator reaches 120° and immediately builds up again at 125°, the null is reasonably narrow. After the null is located, the azimuth indicator points toward the beacon but the indication is ambiguous; i.e., the correct relative bearing may be at either end of the indicator. If the null is more than 5° wide, increase the volume with the volume control until the null is 5° wide. If the null is too narrow or cannot be definitely located decrease the volume.

d. To resolve the ambiguity, rotate the loop manually until the bearing pointer indicates 090° or 270° from the nose of the aircraft. Turn the aircraft right or left until the signal again fades to a null. The beacon is then either to the left or to the right of the aircraft. Maintain a constant heading while using the loop drive switch to maintain the null position. If the loop (bearing pointer) is rotated to the right to maintain the null, the beacon is to the right (clockwise) of the aircraft; if rotated to the left to maintain the null, the beacon is to the left of the aircraft. Procedures for resolving ambiguity are illustrated in figure 17-12.

1. Point A. At point A, the aural null is received on a compass heading of 270°, with the bearing pointer in the 0° to 180° position. The beacon is either directly ahead of or behind the aircraft.

2. Point B. At point B, the bearing pointer is rotated to the 090°/270° (wingtip) position, which causes the signal to rebuild.

3. Point C. At point C, the aircraft is turned until the null reappears at the wingtip position (heading 0°), indicating the beacon is either to the left or right of the aircraft. The aviator flies this heading for a short time and the signal rebuilds. This indicates that the aircraft has flown out of the wingtip null.

4. Point D. The null is relocated at point D by rotating the bearing pointer clockwise to 110°. Therefore, the beacon is at point X, 110° right of the aircraft heading of 0°.

17-24. Homing

a. Homing to a beacon with the receiver operating in the LOOP position is accomplished by first locating the beacon (para 17-23) and then turning the aircraft until the null is on the nose position. If the aircraft drifts out of the null position, the direction of drift is determined by rotating the bearing pointer left or right to relocate the null (para 17-23d). The aircraft is turned until the null is again on the nose position. This procedure is repeated until in the immediate vicinity of the beacon.

b. To determine arrival over the beacon—

1. Estimate the time of arrival accurately.

2. Prior to arrival, set the bearing pointer on the wingtip position (090° to 270°) with the loop drive switch to receive a strong signal.

3. As the aircraft flies over the beacon (or abeam the beacon), a sharp null of short duration will be detected.

17-25. Tracking

Aural null tracking procedures are identical to those used for ADF tracking except that the loop must be manually rotated to determine the null position and relative bearing. In tracking toward or away from a beacon (null at 0° or 180°), drift is indicated by movement of the null to the left or right of the nose or tail position. For example, if the aircraft drifts off course to the left, a 20° heading correction may be made to reintercept the null. Procedures are as follows:
Figure 17-12. Resolving ambiguity (loop).
a. Using the heading indicator, turn 20° right to intercept the course. Set the indicator (loop) to 20° left of the nose.

b. Continue on the same heading until the null reappears at this new setting (20° left of nose). Aircraft is back on desired course.

c. Turn back toward original heading by 10° and relocate the null indicator 10° left of nose.

d. If correction of 10° is excessive or inadequate, make additional corrections of 5°.

17–26. Determination of Time and Distance From a Station

To compute the time and distance to a L/MF station tune and identify the station and place the bearing pointer on the 90° or 270° position with the loop switch. Turn the aircraft until the null is located. Note the time and maintain this heading. Move the loop keeping it in the null position as the aircraft continues to advance. When the bearing pointer has been moved 10° note the elapsed time and apply the formulas from paragraph 17–11.
CHAPTER 18
INTRODUCTION TO INSTRUMENT APPROACH PROCEDURES

Section I. INSTRUMENT APPROACHES

18–1. Purpose

Instrument approaches are designed to assist the aviator in landing during low ceiling and low visibility conditions by—

a. Allowing movement from en route courses and altitudes to a position and altitude at which the final descent on a final approach course can be started.

b. Providing for safe descent on the final approach course with accurate directional guidance.

c. Guiding the aircraft down on the approach path to a minimum altitude from which a safe landing can be made if the aviator has visual reference to the runway.

18–2. Instrument Approach Segments

An instrument approach procedure may have five separate segments (fig 18–1). These include feeder, initial, intermediate, final, and missed approach segments. In addition, an area for circling the airport under visual conditions shall be considered. The approach segments begin and end at designated fixes; however, under some circumstances certain segments may begin at specified points where no fixes are available. The fixes are named to coincide with the associated segment. For example, the intermediate segment begins at the intermediate fix (IF) and ends at the final approach fix (FAF). The segments are discussed in the same order in this chapter that the pilot would fly them in a complete procedure (i.e., from a feeder or initial, through an intermediate, to a final approach and the missed approach if required). Only those segments which are required by local conditions are included in a procedure. The design of the approach should blend all segments to provide an orderly maneuvering pattern to the local area with regard to obstruction protection and airspace considerations.

a. Feeder Segment. The feeder segment, when required, is used to designate course and distance from a fix in the en route structure to the initial approach fix (IAF). Only those feeder routes normally used which provide an operational advantage are established and published as transitions.

b. Initial Approach Segment. In the initial approach, the aircraft has departed the en route or transitional phase of flight and is maneuvering to enter the intermediate segment. An initial approach may be made along an arc, radial, course, heading, radar vector, or any combination thereof. Procedure turns, holding pattern descents, and high altitude teardrop (base turn) penetrations are also initial segments.

c. Intermediate Approach Segment. This is the segment which blends the initial approach segment into the final approach segment. It is the segment in which aircraft configuration, speed, and positioning adjustments are made for entry into the final approach segment. The intermediate segment begins at the IF and ends at the FAF. There are two basic types of intermediate segments—the radial or course and the arc. When radar vectors are used, the vectored courses to the final approach course constitute the initial and intermediate approach to a procedural intermediate sector.

d. Final Approach Segment. This is the segment in which alinement and descent for landing are accomplished. The final approach segment considered for obstruction clearance begins at the final approach fix, or point, and ends at the missed approach point. Final approach may be made to a runway for a straight-in landing, or to an airport for a circling approach.

e. Missed Approach Segment. A missed approach segment begins at the missed approach point and provides obstruction clearance and course guidance to a fix for holding or return to the en route structure. The missed approach point specified in the approach procedure may be the point of intersection of an electronic glidepath with a decision height (DH) or minimum descent altitude (MDA), a navigation facility, a fix, or a specified distance from the final approach fix.

18–3. Straight-in Approaches

In figure 18–2, an aircraft is cleared to Smithdale VOR (final approach fix for a VOR Runway 9 approach to Smithdale Airport) via the Robinsville VOR 135° radial, Jones intersection, direct to
Figure 18-1. Segments of an approach procedure.
Smithdale VOR maintaining 3,000 feet. Over the Robinsville VOR (IAF), the aircraft is cleared to "descend and maintain 2,000." The aircraft descends to 2,000 feet while flying between Robinsville VOR and Jones intersection (the initial approach segment) on the Robinsville VOR 135° radial. The term "NO PT" (no procedure turn) appears on the course between Jones intersection and Smithdale VOR indicating that when cleared for VOR Runway 9 approach the pilot shall not fly a procedure turn. (See para 18-4 for an approach using a procedure turn.) Over Jones intersection, the aircraft is cleared for VOR Runway 9 approach. The aircraft descends to 1,300 feet between Jones intersection and Smithdale VOR (intermediate approach segment) on the 270° radial. After passing Smithdale VOR (FAF), inbound to the airport on the 090° radial, the aircraft begins its final descent to minimum descent altitude published on the approach chart. During the descent from 1,300 feet to landing minimums, the pilot should expect to establish visual contact with the runway environment and be in a position to complete the visual landing. If visual contact with the runway environment is not made or cannot be maintained by the time the aircraft has reached the missed approach point, the missed approach procedure will be executed. Straight-in approaches are required, unless otherwise authorized by ATC, (1) where the procedure specifies "NO PT" or "FINAL," (2) when a radar controller vectors the aircraft on a radar initial approach to a final approach fix or a position on the final approach course, or, (3) when the controller specifies in the approach clearance "cleared for straight-in (type) approach" although "NO PT" is not charted and the aircraft is not being radar vectored.

Note. The term straight-in approach as used in this paragraph refers to an instrument approach procedure that does not include a procedure turn. It should not be confused with straight-in landing. An aircraft may execute a straight-in approach to a specified runway and then circle to another runway for landing. Circling minimums will be applied in this case. Straight-in landing minimums apply, when
published on the approach chart, and a landing is to be made on the runway specified in the air traffic control clearance and contained in the procedure chart title.

18—4. Instrument Approach With Procedure Turn

In figure 18—3, an aircraft is approaching Smithdale VOR from a direction not suited for a straight-in approach. In this case, the approach will require a procedure turn. The aircraft is cleared for a VOR approach while en route from Brown VOR to Smithdale VOR ((A), fig 18—3). If the aircraft is flying at an altitude above published transition/feeder altitude (3,000 feet, fig 18—3), the aviator is cleared to descend to transition/feeder altitude upon receiving approach clearance. The initial approach begins when the aircraft crosses Smithdale VOR (IAF) outbound. As the aircraft flies outbound for a procedure turn, it descends to 1,800 feet ((B), fig 18—3). After completion of procedure turn (para 18—8 through 18—13), the aircraft begins the intermediate approach segment and descends to 1,300 feet. The final approach segment begins after passing Smithdale VOR (FAF) inbound, and descent to landing minimums is commenced. The aviator should be certain that he has received positive indication of VOR station (FAF) passage before he departs the intermediate approach segment altitude.

Section II. FEEDER ROUTES/STANDARD TERMINAL ARRIVAL ROUTES (STARS)

18—5. Definition and Purpose

The terms feeder route (sometimes referred to as terminal routing) and STARS refer to procedures whereby an aircraft departs one en route facility or fix and proceeds along a specified course to a nearby initial approach facility or fix. Figure 18—4 shows three facilities in a terminal area: Robinsville (RBN), Brown (BRO), and Smithdale (SMI). Two of these (RBN and BRO) are not suitably located to serve as approach aids; the other (SMI) is located to provide approach service to the airport. Air traffic arriving at RBN and BRO must transition to the SMI VOR to make an instrument approach to the airport.
18–6. Publication

a. Feeder Routes. Information on course, distance, and minimum altitude, which is necessary for the aviator to execute a feeder route, is published on instrument approach charts. Figure 18–4 shows an area with several published feeder routes from VOR facilities and intersections to the SMI VOR approach facility for the nearby airport. In each case, the information published for the feeder route consists of—

1. Course, with the magnetic direction printed and indicated with an arrow.

2. Distance, shown to the nearest tenth of a mile.

3. Minimum authorized altitude, which is based upon a standard obstruction clearance of 1,000 feet above obstacles within 4 nautical miles of the transition/feeder course. On feeder routes which serve as approach aids, "NO PT," or the word FINAL, is printed following the minimum authorized altitude (at Jones intersection on fig 18–4). This indicates that aircraft approaching Smithdale from Jones intersection will normally be cleared for a straight-in approach.

b. Standard Terminal Arrival Route (STAR). A standard terminal arrival route (STAR) is an air traffic control coded instrument flight rules (IFR) arrival route established for application to arriving IFR aircraft destined for certain airports. FLIP includes a book of STARs for the airports. A STAR will be included in the flight plan if the aviator plans to use one upon arrival at this destination or at any intermediate point where an instrument approach will be made. STARs may have published transition/feeder routes which indicate courses and distances from one or more en route navigation facilities to the navigational facility or fix from which the STAR begins.

18–7. Execution

A feeder route or STAR is executed in accordance with the Air Traffic Control (ATC) clearance. Arriving aircraft are usually cleared to the initial approach fix (IAF) or to a fix on the en route structure. Routing or a STAR will be named in the clearance. Certain of these fixes on the en route structure will have designated feeder routes or STARs to the initial approach fix. If there is to be a delay for the approach, ATC will issue holding instructions. If there is to be no delay for the approach, ATC will issue clearance for an approach prior to the aircraft reaching the fix. The aviator will then execute the published feeder route or STAR (if a STAR has been assigned) to the initial approach fix utilizing the published altitude(s) as desired (unless an altitude restriction or other altitudes had been assigned in the approach clearance) and execute the approach. If there has been no STAR or published feeder route to the IAF, the controller should have issued routing and assigned an altitude to the IAF along with the approach clearance.
18–8. Purpose

A procedure turn is a maneuver which allows the aviator to—

a. Reverse flight direction.

b. Descend from initial approach altitude or last assigned altitude to a specified procedure turn altitude from which descent for final approach is begun.

c. Intercept the inbound course at a sufficient distance away from the approach fix to align the aircraft for the final approach.

18–9. Typical Patterns

Typical procedure turn flight patterns are illustrated in (A) and (B) of figure 18–5. A description is given for each illustration (a and b below).

a. 45° Turn From Nonprocedure Turn Side ((A), Fig 18–5).

(1) In this situation the aircraft flies on the outbound course or parallel to the course on the nonprocedure turn side.

(2) At point A the aircraft turns right to the procedure turn heading published on the approach chart, 315°. The aircraft then flies 40 seconds after crossing the approach course. If tracking outbound on the approach course, timing begins when the aviator starts the turn to the procedure turn heading. The aviator may adjust the time to compensate for known headwinds or tailwinds.

(3) At point B the aircraft turns left to intercept the approach course at point C and flies inbound to the final approach fix.

b. 45° Turn From Procedure Turn Side ((B), Fig 18–5).

(1) In this situation the aircraft flies outbound to point A north of the approach course.

(2) At point A the aircraft turns left to intercept the approach course. After intercepting the approach course, the aircraft turns right to the procedure turn heading published on the approach chart, 315°. The aircraft then continues the procedure as discussed in a above.

c. Teardrop Turn. A teardrop turn (fig 18–6) may be executed in lieu of the 45° type procedure turn if the aircraft heading at the time of crossing the approach facility is conveniently aligned with a teardrop course.

Note. All of the above (a, b, and c) applies to a procedure turn illustrated in figures 18–6 and 18–9. If a teardrop pattern is shown in an approach procedure, the teardrop pattern will be flown.

Figure 18–5. 45° turns.
(1) Upon arrival over the approach fix, the aviator follows a course outbound not to exceed 30° from the reciprocal of the approach course and on the depicted procedure turn side.

(2) At the end of one minute (point A), the aviator turns inbound to intercept the approach course at point B. The timing for the teardrop begins over the approach fix or wings level outbound, whichever occurs last.

18-10. Procedure Turn Area

a. The limiting distance for procedure turns is published on the profile view of approach charts ((B), fig 18-3). It is normally 10 nautical miles. Deviations from normal will be clearly depicted on the approach charts.

b. In flying outbound from the approach fix to execute the procedure turn, the aviator normally flies a minimum of 1 minute. This outbound leg may be extended, if necessary, to lose additional altitude or compensate for adverse wind effects. However, in no event may the distance outbound from the station exceed that published on the approach chart.

18-11. Obstruction Clearance—Minimum Altitude

The procedure turn altitude is the minimum altitude that can be flown until intercepting the inbound course on approach. The published procedure turn altitude will provide a minimum of 1,000 feet of clearance in the maneuver area. In flying outbound from the approach fix, the aviator normally descends from the transition/feeder altitude to the procedure turn altitude. This descent may vary between several thousand feet and a few hundred feet—or there may be no descent if the feeder route altitude is the same as the procedure turn altitude. The rate of descent is a matter of aviator judgment; however, it should not exceed a maximum safe rate at which the aviator has complete control of the aircraft. A descent rate of 500 feet per minute is recommended for the last 1,000 feet of altitude change. If the aircraft has not arrived at the minimum procedure turn altitude at the time the turn starts, the descent is continued during the turn until the minimum altitude is reached. If the initial approach altitude is unusually high, it may be necessary to lose the excessive altitude in a holding pattern.

18-12. The 45° Procedure Turn

The procedure turn is made at the standard rate of 3° per second. This rate of turn may be increased or decreased but not to exceed 30° bank to allow the aircraft to roll out on the desired track. In aircraft equipped with an integrated flight system which uses a steering pointer, the turn is executed with a centered steering pointer (approximately a 25° bank angle).

a. In executing the 45° procedure turn, the aviator will normally fly for 40 seconds from the approach course on the procedure turn heading. This timing is calculated so that the subsequent turn to the inbound course will be completed when the final approach course is intercepted. However, the 40 seconds flying time must be adjusted if known crosswinds exist. Figure 18-7 illustrates the results when time adjustments are not made. During the turn inbound, the aviator must monitor the navigation instruments to see if the turn will result in an interception of the final approach course. When it becomes obvious that it will not, the rate of turn should be adjusted by increasing or decreasing the bank angle. If this action does not aline the aircraft with the approach course, the turn should be stopped or continued depending on the position of the aircraft at a 45° intercept heading to the inbound course. When the aircraft’s position begins to aline with the inbound course, the turn should be continued and appropriate winddrift correction applied.

b. Adjustment to the 40 seconds flying time is based upon the known or estimated drift correction required to fly the track outbound. An allowance of 1 second for each degree of drift correction used on the outbound leg should be applied to the 40 seconds flown on the leg of the procedure turn. Figure 18-8 shows the aircraft holding a 10° drift correction flying outbound for the procedure turn. After turning left 45°, the aircraft will be headed into the wind and will fly for 50 seconds.

18-13. Missed Approaches

If the instrument approach and landing cannot be completed successfully, the aviator executes a missed approach procedure. This procedure is published on the approach chart and normally is supplemented by further instructions and clearances from the controller.
Figure 18-7. Improper procedure turn patterns caused by wind effects.

Figure 18-8. Adjusting procedure turn for wind effects.

a. Procedure. The typical procedure normally directs the aircraft to proceed on a specified course to or from a designated facility, and to climb to a specified minimum altitude. Figure 18-9 shows plan and profile views of an instrument approach procedure, with the missed approach procedure printed within the profile view. The aircraft is making the final approach on the 290° radial from the facility and is unable to complete the landing. The aviator begins climbing to an altitude of 1,800 feet, indicated on the altimeter (1,582 feet above the airport), on a direct course to the Mobile VORTAC with intent of holding. The procedure is based upon the use of the Mobile VORTAC; the missed approach altitude guarantees adequate obstacle clearance provided the
aviator begins to climb at the missed approach point and follows the published procedure.

b. Report. The aviator must report a missed approach to the controller as soon as practical after he starts the procedure. He reports the missed approach and makes a specific request. The aviator may request clearance to execute another approach (if feasible), or he may request clearance and file a flight plan to an alternate airport.

Figure 18-9. Plan and profile views of an instrument approach procedure.
Section IV. HOLDING

18–14. Definition and Purpose

Because of heavy traffic conditions en route or at busy air terminals, air traffic controllers occasionally instruct aviators to hold. **Hold** is the procedure used to delay an aircraft at a definite position and assigned altitude. In some instances the aviator is directed to climb or descend to a newly assigned altitude in the holding pattern.

18–15. Holding Pattern Configuration

The _standard_ holding pattern consists of right turns (fig 18–10), the _nonstandard_ holding pattern of left turns.

18–16. Timing

a. The initial outbound leg of a holding pattern at or below 14,000 feet mean sea level is flown for 1 minute. Above 14,000 feet mean sea level, the leg is flow for 1½ minutes. This applies unless otherwise specified in the approach chart or in the ATC clearance.

b. Subsequent outbound legs are adjusted (depending on the wind) so that the inbound leg is 1 minute at and below 14,000 feet mean sea level and 1½ minutes above 14,000 feet mean sea level. For example:

1. A helicopter flying a true airspeed of 75 knots experiences a 30-knot headwind on the outbound leg and a 30-knot tailwind on the inbound leg. The following tabular data shows the comparative times flown on the outbound and inbound legs to compensate for this wind (no allowance is made for drift during the inbound turn):

<table>
<thead>
<tr>
<th>Outbound time</th>
<th>Inbound time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 minute</td>
<td>26 seconds</td>
</tr>
<tr>
<td>1 minute and 20 seconds</td>
<td>34.5 seconds</td>
</tr>
<tr>
<td>1 minute and 40 seconds</td>
<td>43 seconds</td>
</tr>
<tr>
<td>2 minutes</td>
<td>51.5 seconds</td>
</tr>
<tr>
<td>3 minutes</td>
<td>1 minute and 17 seconds</td>
</tr>
</tbody>
</table>

(2) In this example, therefore, the aviator must fly approximately 2 minutes and 20 seconds on the outbound leg to achieve the desired 1-minute flying time on the inbound leg.

c. Outbound timing (fig 18–11) begins over or abeam the holding station, whichever occurs later. The position abeam the station can be determined by a change of the to-from indicator or by setting the course selector to a radial 90° from the approach course. When the needle centers, the aircraft is at the abeam position. The RMI is used to determine the abeam position for both VOR and ADF holding. When the appropriate bearing pointer points to a heading 90° to the holding course, the aircraft is at the abeam position. During intersection holding, outbound timing is started when the aircraft has completed its outbound turn and is wings level on the outbound heading. Outbound time will be adjusted to achieve the desired inbound time.

d. The procedures for determining the abeam position as discussed in _c_ above will not be affected by the aircraft heading. Outbound timing should begin when any one of the indicators identify the abeam position regardless of the outbound heading.

Figure 18–10. Standard holding pattern.
18–17. Airspeeds

Maximum indicated airspeed (IAS) allowed for holding is 175 knots for all propeller-driven aircraft and helicopters. Exception: Helicopters using holding patterns depicted on COPTER instrument approaches (FLIP) will fly 90 knots maximum indicated airspeed. Different speeds are allowed for civil and military turbojet aircraft, depending on holding altitude and aircraft category, as listed in current navigation publications. Aircraft operating en route at normal cruise airspeeds higher than the maximum authorized for holding are required to reduce airspeed 3 minutes prior to reaching a holding fix.

18–18. Turns

Make all turns during entry and while holding at: (1) 3° per second, or (2) not to exceed 30° bank angle, or (3) 25° bank angle provided a flight director system is used.

Figure 18-12. Holding pattern entry.
18–19. Holding Pattern Entry

a. Aviator action.

(1) Cross holding fix initially at or below maximum holding airspeed. If required, effect speed reduction 3 minutes prior to estimated arrival time over the holding fix.

(2) Compensate for known effect of wind, except when turning.

(3) Determine entry turn from aircraft heading upon arrival at the holding fix.

b. Standard holding pattern entry (fig 18–12).

(1) Refer to letters on figure 18–12 in applying the following instructions:

(a) Parallel Procedure—Parallel holding course, turn left, and return to holding fix or intercept holding course.

(b) Teardrop Procedure—Proceed on outbound track of 30° (or less) to holding course; turn right to intercept holding course.

(c) Direct Entry Procedure—Turn right and fly the pattern.

(2) Distance Measuring Equipment (DME). DME holding is subject to the same entry and holding procedures as in (a) and (b) above except that distances (nautical miles) are used in place of time values. The outbound course of a DME holding pattern is called the outbound leg of the pattern. The length of the outbound leg will be specified in the procedure chart or by the controller. The end of the outbound leg is determined by the appropriate odometer reading. For example, see figure 18–13.

When the inbound course is toward the navaid and the fix distance is 10 NM, and the leg length is 5 NM, then the end of the outbound leg will be reached when the odometer reads 15 NM. For example, see figure 18–13.

When the inbound course is away from the navaid and the fix distance is 28 NM and the leg length is 8 NM, then the end of the outbound leg will be reached when the odometer reads 20 NM.

(3) Nonstandard holding pattern entry. The fix end and outbound end turns are made to the left. Entry procedures to a nonstandard pattern are oriented in relation to the 70° line on the holding side just as in the standard pattern.

18–20. Departing the Holding Pattern

When cleared by the controller to leave the holding fix, the aviator normally departs the pattern...
from over the fix. An exception to this occurs when the controller specifically states "... cleared from your present position ..." If the controller has specified a departure time, the aviator must adjust the holding pattern so that the aircraft is over the holding fix ready to depart at the specified time. If an aircraft is holding on the published final approach course at an approach fix and receives clearance for the approach, the aviator normally begins the final approach from the holding pattern without executing the conventional procedure turn.

Note. At some locations, beginning the final approach from the holding pattern may be prohibited by notes published on the approach chart. When this occurs a standard procedure turn will be flown.

18-21. Drift Correction in the Holding Pattern

a. The aviator will compensate for known effect of wind, except while turning. If no attempt is made to correct for adverse effects of crosswinds while holding, the turn inbound will either overshoot or undershoot the holding course depending on the direction of the wind (fig 18-14).

b. If the same amount of drift correction is flown for both inbound and outbound legs (but applied in opposite directions), the outbound leg will parallel the inbound leg; however, the turns will still be wide or tight, respectively. Since the aviator has little control over the aircraft's track while turning, he must adjust the track of the outbound leg to avoid turning short of or overshooting the holding course due to effects of wind drift.

c. For holding pattern drift correction—

(1) Determine the correction necessary to maintain the track inbound.

(2) While flying the outbound leg, double the inbound correction and apply it in the opposite direction; or if the inbound correction is over 10°, use an outbound correction of 10° plus the inbound correction.

Note. This guide must be adjusted to fit each situation. Analysis of the initial inbound turn (overshooting or undershooting) should be used as a basis for a subsequent adjustment.

d. Two example of applied drift correction are—

(1) In (A) of figure 18-15, the inbound correction is 5° right; therefore, the correction used outbound is 10° left.

(2) In (B) of figure 18-15, the inbound correction is 15° left; therefore, the correction used outbound is 25° right.

18-22. Holding Clearances and Reports

a. When delivering an ATC clearance for holding at a fix with a depicted holding pattern, the controller gives the following information in the order shown:

(1) Direction to hold from the holding fix.

(2) Name of the holding fix.

(3) Time to expect further clearance (EFC) or time to expect approach clearance (EAC).

b. If the holding pattern is not depicted, the controller issues general or detailed holding instructions. General holding instructions contain the following information in the order shown:

(1) Direction to hold from the holding fix.

(2) Name of the holding fix.

(3) Radial, course, bearing, airway, or jet route which constitutes the holding course.

(4) Outbound leg length in nautical miles if DME is to be used.

(5) Direction of holding pattern turns, if left turns are to be made.

(6) Time to expect further clearance (EFC) or expect approach clearance (EAC).

c. Detailed holding instructions contain the same items as for general holding above but always specify the leg length in minutes, nautical miles RNAV, or nautical miles DME, and direction of holding pattern turns.

d. Typical clearances are:

(1) "Hold south of the Ajax VOR, expect approach clearance at 1930" (A), fig 18-16.

(2) "Hold south of the Ajax VOR on the 180° radial; expect approach clearance at 1930" (B), fig 18-16.

(3) "Hold northeast of Red Cliff intersection on Victor-21, left turns, expect further clearance at 2050" (C), fig 18-16.

e. If not in radar contact, aviators are required to report the time and altitude reaching a holding fix. No report is required if in radar contact. In all cases the aviator will report when departing a holding fix.

18-23. Stacking

Stacking is the procedure when two or more aircraft are holding, one above the other, at the same fix. As the lower aircraft leaves the stack to complete its approach, the aircraft above it is cleared to the next lower holding altitude. This clearance is given after the aviator of the approaching aircraft has reported that he is vacating his altitude and is leaving the radio facility inbound. The second aircraft is cleared for an approach when the first aircraft is sighted by the tower and when the tower considers that a normal, safe landing will be accomplished. The length of time an aircraft is required to hold in a stack
depends upon the time required by the aircraft in the lower positions to land. Since the delay may be of considerable duration, the aviator should fly at an airspeed and power setting which will provide fuel economy but still permit adequate aircraft control.

18-24. Instrument Approach Safety

Even the aviator with vast instrument flying experience will make a safer instrument approach if he utilizes a co-pilot to assist him. Before the flight the co-pilot should be briefed and made to understand the duties he will be expected to perform. This is especially important on the most critical phase of an instrument flight—the instrument approach and landing. In addition to any other duties assigned the co-pilot, the following duties are deemed important to the execution of a
safe instrument approach and landing. The co-pilot should:

a. Monitor all engine instruments and warning lights.

b. Be sure that the correct approach chart is being used.

c. Know at all times the position of the aircraft in the approach pattern.

d. Crosscheck flight instruments and radio navigation instruments for malfunction.

e. Check that altimeters are set at the correct barometric pressure.

f. Take time to check all altimeter indications. (The pilot may misread the altimeter.)

g. Verify all fixes that are determined during the approach.

h. Keep close watch on the altimeter on the final approach segment and notify the pilot when he is approaching 100 feet above the DH or MDA (whichever applies to the approach) and when he is approaching DH or MDA.
i. Watch for the approach lights or runway to come into view. He will not inform the pilot that they are in view until positive that they will remain in view and the approach can be continued visually to a landing.

j. Be prepared to take the aircraft controls and make the visual approach and landing if requested by the pilot.

Figure 18-16. Holding patterns flown for typical clearances.
CHAPTER 19
VOR AND NDB APPROACHES

Section I. APPROACH CHARTS

19-1. General
The separate VOR and NDB approach charts published by Federal agencies and private companies contain complete information on current instrument approach procedures at specific airfields. The format of all these charts is basically the same. Therefore, once the aviator has studied one type chart and its legend, he is usually able to use other types effectively.

19-2. Typical VOR Approach Chart

a. General. The Cairns AAF VOR runway 6 approach chart (fig 19-1) is typical of those found in current navigational publications. Its format and general data presentation are a guide for the aviator. For detailed explanation of approach chart symbols, consult FLIP instrument approach procedure charts and their legends printed with each volume.

b. Explanatory Data for Figure 19-1. The following numbered items apply to the same numbers shown on figure 19-1.

(1) Chart title includes type of approach (VOR, NDB, ILS, LOC, etc.) and to which runway, and name of airport, city, and state. Charts which include the word COPTER in the title are for exclusive use of helicopters.

(2) Communications data includes primary frequencies for approach control, tower, ground control, etc., and type of radar (ASR/PAR) or other service available.

(3) Feeder route data from outer fixes includes minimum altitude (2,000 ft) direction (230°), and distance (27.1 NM).

(4) Minimum sector altitudes within 25 nautical miles.

(5) Approach facility location identification shows frequency, name, identifier, and code. (May contain communication capability restriction leg- end.)

(6) Procedure track shows direction of procedure turn with 45° off-course bearings.

(7) Missed approach track with description listed in profile.

(8) Procedure turn data: limiting distance (remain within 10 NM), and minimum altitude (1,700 ft).

(9) Straight-in (RWY 6) minima data by aircraft category (aircraft category based on stall speed and maximum gross weight).

(10) Circling minima data by aircraft category.

(11) Minimum descent altitude (MDA) shown in feet above mean sea level (MSL). This is the lowest altitude to which descent is authorized until airport or runway environment is in sight.

Note. On precision approaches (approaches with glide slope information), this value is referred to as a decision height (DH).

(12) Visibility values are expressed as runway visual range (RVR), prevailing visibility (PV), or runway visibility (RV). RVR is shown in hundreds of feet; e.g., 24 equals 2,400 feet. PV and RV are shown in statute miles and fractions thereof; e.g., 1½ equals 1½ statute miles.

(13) Height above touchdown (HAT) indicates height of MDA (or DH on precision approaches) above the runway elevation in the touchdown zone (first 3,000 ft) of runway for straight-in landings.

(14) Height above airport (HAA) indicates height of MDA above airport elevation for circling to land.

(15) Ceiling and visibility value for military use in accordance with current directives.

(16) Airport diagram to show airfield elevation, runway location with dimensions, runway and approach light information, direction and distance from related facility, touchdown zone elevation (TDZE 297 ft), taxiway and helicopter landing areas used in air traffic control, obstruction height and closed runways.
Figure 19-1. Typical VOR approach chart.
19–3. VOR Station Location

VOR stations used in VOR approaches may be located some distance from the airport as shown in figure 18–9 (called OFF Airport VOR) or may be located on or near the airport as shown in figure 19–1 (called ON Airport VOR). Figures 19–1 and 19–2 are used to illustrate a typical VOR approach procedure.

19–4. Initial Contact and Arrival

An aviator is flying eastbound on V-241 at 5,000 feet with Cairns AAF as his destination (fig 19–2).

In compliance with ATC instructions, he establishes radio contact with Cairns approach control over Darlington intersection. Cairns approach control clears him to the Cairns VOR from over Hartford intersection, with clearance to hold southwest of Cairns VOR on the 231° radial left turns. He is cleared to descend and maintain 4,000 feet and given an expected approach clearance time of 1525. Upon arrival at Cairns VOR at 4,000 feet, the aviator—

a. Notes the time.

b. Turns outbound to enter the holding pattern.

c. Reduces airspeed to prescribed holding speed if not done previously.

d. Reports to ATC.

Note. Actions a through c above are performed almost simultaneously. The report is not made until after station passage.

19–5. VOR Holding

a. Initial passage of Cairns VOR occurs when the to-from indicator reverses readings (TO to FROM). The aviator then turns outbound to a heading of 231° (fig 19–3) to enter the holding pattern. Use of the course selector and deviation needle to track outbound during the entry procedure is optional, but this procedure will aid the aviator in orienting himself with respect to the VOR station and to the holding radial. He may either set the course selector on the holding radial outbound or fly a heading outbound with the course selector set for tracking inbound.

b. After flying 1 minute on the outbound heading of the entry leg, the aviator turns left to intercept the holding course inbound (051°, fig 19–3). Prior to turning, the course selector is set on 051° and the to-from indicator reads TO. The aviator should adjust the inbound turn as he monitors the course indicator and/or the RMI to intercept the desired inbound course.

c. During the initial inbound leg of the holding course, the aviator should determine (1) the drift correction necessary to remain on the desired
track, and (2) the time flown on the inbound leg. It should be noted that the aviator probably won’t be able to establish proper drift correction his first time inbound but should be able to do so on subsequent legs. Subsequent outbound legs of the holding pattern are adjusted so that each inbound leg requires 1 minute. Drift corrections in the holding pattern are discussed in chapter 18.

d. After flying over the VOR facility, the aviator makes a 180° turn to the outbound heading of the holding course. Timing for the outbound leg should begin when the aircraft is abeam the station. One accurate method for determining his position abeam the station is by rotating the course selector 90° to fix the aircraft position abeam the station (fig 19-4). This technique permits the aviator to time the outbound leg accurately from a position abeam the station.

(1) **Point A.** During the left turn outbound, the aviator rotates the course selector 90° to the left (reading of 321°), thereby enabling him to fix his position abeam the station. During the turn, the deviation needle deflects full left.

(2) **Point B.** Needle centers abeam the station. Outbound timing begins at this time.

(3) **Point C.** After passing point B, course selector is reset to 051° to intercept the holding course inbound. The needle deflects to the side away from the holding course during the outbound portion of the holding pattern.

(4) **Point D.** Needle centers as aircraft turns inbound and intercepts the holding course.

e. Other methods of accurately determining position abeam the station are set forth in chapter 18.

f. When holding at a fix where methods described in d and e above cannot be used, the aviator should begin timing the outbound leg immediately after rolling out of the 180° standard rate turn.

19–6. Descent While Holding

a. The aviator is holding at 4,000 feet over Cairns VOR. The approach chart (fig 19-1) shows the minimum procedure turn altitude for the VOR approach to the field as 1,700 feet. As lower air traffic departs the holding pattern, the controller clears the aviator to descend to a lower holding altitude. In this situation, the clearance to 3,000 feet is received. The aviator continues the established holding pattern and establishes a 500-foot-per-minute rate of descent. When the aviator reports leaving 4,000 feet, the controller can assign this holding altitude to another aircraft. A 500-foot-per-minute rate of descent should not be exceeded when within 1,000 feet of desired altitude.

b. If the aircraft had been at a higher altitude (e.g., 9,000 ft), and had been cleared to a low
altitude (e.g., 3,000 ft), the aviator could have established the maximum rate of descent at which he could still fully control the aircraft. He could have used this rate to within 1,000 feet above the newly assigned holding altitude; he would then reduce to a rate not to exceed 500 feet per minute for the 1,000 feet of descent.

19-7. The Approach

a. The aviator has been advised of his expected approach clearance time (para 19-4). As air traffic conditions change, the controller revises the expected approach clearance time and advises the aviator accordingly. When the aviator is cleared for the approach, he may immediately begin the descent from the 3,000-foot holding altitude to the 1,700-foot procedure turn altitude, regardless of his position in the holding pattern. The final turn inbound from the holding pattern serves as the procedure turn, so the aviator could extend the outbound leg to lose altitude if necessary,
provided he does not exceed the 10 nautical miles (fig 19-1) prior to turning inbound. Since this approach is an ON Airport VOR approach, the final segment on the approach begins with completion of the procedure turn.

b. Descent from the procedure turn altitude may be initiated when the aircraft has intercepted the final approach course inbound. So that visual reference with the runway environment can be established as early as possible before reaching the missed approach point, the descent to the MDA should be made without delay. An effort should be made to arrive at the MDA with enough time/distance remaining to identify the runway environment and descend from the MDA to touch down at or near the normal approach angle and descent rate for the aircraft. If the approach clearance did not state that circling to another runway would be required, the aviator will use the MDA for a straight-in approach to runway 6 (S-6) according to the category of his aircraft. If circling to another runway is required, the aviator will use the MDA for circling according to the category of his aircraft.

c. Descent below the MDA is not authorized until the pilot establishes visual contact with the runway environment and can reasonably expect to maintain visual contact throughout the landing. In making an ON-Airport VOR approach, the VOR is the missed approach point. Should the aviator not make visual contact by the time he reaches the VOR, he would execute a missed approach (para 19-9).

Note. Where the VOR station is located away from the airport descent is restricted to minimum altitude prior to reaching the final approach fix. After passing the final approach fix inbound descent to minimum descent altitude (MDA) is authorized.

19-8. Landing

Landing clearance will be issued by ATC during the approach. If visual reference is lost while circling to land from an instrument approach, the missed approach procedure will be executed. To become established on the prescribed missed approach course, the aviator should make an initial climbing turn toward the landing runway and continue the turn until he is established on the missed approach course.

19-9. Missed Approach

If for any reason, the landing is not accomplished, the aviator executes the missed approach procedure. To accomplish the procedure as specified in figure 19-1, the aviator—

a. Adjusts power and attitude, as necessary, to begin an immediate climb.

b. Turns right to intercept the 180° radial of Cairns VOR.

c. Sets the course selector to 180°. (This results in a FROM indication and a right needle deflection on the course indicator.)

d. Reports a missed approach to the controller and requests further clearance, either for another approach or to his alternate airport, as appropriate. (If he requests clearance to the alternate, flight plan data must be given to the controller.)

e. Checks for centered needle at the 180° radial.

f. Continues climb to missed approach altitude (2,000 ft).

g. Complies with subsequent ATC instructions.

Section III. TYPICAL NDB APPROACH USING ADF PROCEDURES

19-10. General

NDB approach charts (fig 19-5) are similar in appearance and format to VOR approach charts discussed in the previous section. The approach procedures are essentially the same as those for VOR. In the event of an RMI malfunction, fixed card ADF procedures must be used.

19-11. Arrival

Figure 19-6 shows an aircraft (and the associated instrument indications) as it approaches the McLendon nondirectional beacon from the Chelsea intersection at 5,000 feet. The pilot will execute an NDB approach to runway 5 at Birmingham Municipal Airport (fig 19-5). The aviator has been cleared to hold southwest of the McLendon outer marker (OM) on a 082° course to the outer marker, left turns. He is cleared to descend and maintain 4,000 feet and given an expected approach clearance time of 1730. Upon arrival at McLendon NDB at 4,000 feet, the aviator—

a. Notes the time.

b. Begins his turn outbound.

c. Reduces airspeed to the prescribed holding speed if not done previously.

d. Reports to ATC.
Note. Actions a through c are performed almost simultaneously. The report is not made until after station passage.

19-12. Holding Entry

Figure 19-7 shows the NDB holding pattern entry procedure and instrument readings during entry to the pattern. The aviator arrives at BH and accomplishes the normal entry into the left-hand holding pattern by turning parallel to the outbound heading on the holding side.

a. Point A. After passing BH inbound from Chelsea intersection, the aviator observes station passage (the number one needle—the bearing pointer—will begin to oscillate and then deflect into the lower half of the RMI compass card). The aviator will then begin his standard rate turn to
the left. At point A, the aircraft is on a heading of 232°. The bearing pointer indicates that the station is to the left rear of the aircraft. The tail of the bearing pointer indicates the bearing from the station on which the aircraft is located (300°) and the head of the bearing pointer indicates the magnetic direction to the station (120°).

b. Point B. The aircraft has flown outbound for approximately 1 minute and has begun a turn to intercept the inbound course of 052°. During the turn, the aviator should monitor the heading indicator and movement of the bearing pointer and should adjust the rate of turn in order to roll out on the 052° course to the beacon.

c. Point C. The aircraft is inbound to the station on a heading of 052° as shown. The bearing pointer indicates that the magnetic direction to the station is also 052°. Therefore, the aircraft is tracking "on-course" to the station. Throughout the inbound leg, the aviator should determine the drift correction (if any) to maintain his desired track and the flight time from roll-out to station passage in order to adjust subsequent legs.

19–13. Holding

Figure 19–8 shows the holding pattern with aircraft locations shown at various points in the pattern.

a. Point A. After passing the beacon inbound, the aviator begins the left turn to the outbound heading.

b. Point B. As the aviator completes the turn to the outbound heading, adjusting for drift correction, he monitors the ADF indicator to determine when he is abeam the station. When the indicator reaches the 90° position (142° in this case), the aircraft is abeam the station and the timing for the outbound leg begins.

c. Point C. Having flown the required outbound time (based on the desired inbound time of 1 minute), the aviator begins a left turn to reintercept the 052° inbound course.

d. Point D. The aviator again establishes the aircraft on the inbound course of 052° and rechecks his timing and drift correction for further refinements.
Figure 19-7. NDB holding pattern entry.

Figure 19-8. NDB holding pattern procedure.
Figure 19-9. NDB descent.
19–14. Descent

Figure 19–9 shows the NDB descent procedure from the holding pattern and should be used in conjunction with figure 19–5. At point A, the aviator has received approach clearance and has begun his descent to procedure turn altitude (2,500 ft) while in the holding pattern. Because he is established in the holding pattern, the published procedure turn is not required as the turn inbound serves as the procedure turn.

Note. After receiving approach clearance, the aviator may disregard the time restrictions for the outbound and inbound legs. However, he must remain within his airspace limitations as depicted on the approach chart (in this case, 10 NM).

In the event the aviator has been issued approach clearance while inbound to McLendon NDB from Chelsea intersection, he would have turned and intercepted the outbound course (232°) after arrival at McLendon NDB and executed the procedure turn. (See chap 18 for a discussion of procedure turns.)

19–15. NDB Intermediate and Final Approach

a. Figure 19–10 shows the procedure and instrument readings during the intermediate and final segment of the approach. After completing the turn inbound the aviator intercepts the 052° inbound course and descends to 2,000 feet (the minimum authorized altitude prior to reaching the final approach fix (BH)).

b. When the aviator observes station passage, he notes the time, begins his descent to the minimum descent altitude (MDA), and reports the beacon inbound. The descent to the MDA (696 feet for a straight-in approach or 657 feet for a circling approach to another runway (fig 19–5)) should be made without delay, using a rate of descent not to exceed 500 fpm, so that visual reference with the runway environment can be established as early as possible before reaching the missed approach point. However, descent below the appropriate MDA is not authorized until the aviator establishes visual contact with the runway environment and can reasonably expect to maintain visual contact throughout the landing.

c. In this approach, the facility (BH) is located OFF Airport (para 19–3) and the aviator will continue to fly toward the airfield at the MDA for the time computed based on the distance to the field and the estimated groundspeed (fig 19–10). For this approach, the distance from the final approach fix (BH) to the missed approach point is 4.5 NM. If the aviator has computed his groundspeed to be 90K, the flight time for this segment of the approach is 3 minutes. If the MDA is reached prior to the expiration of the 3 minute time period, the aviator will maintain this altitude and continue on course. A missed approach will be executed 3 minutes after leaving the final approach if visual contact with the runway environment has not been established.

Note. For NDB approaches, the missed approach point is determined by computing the flight time from the final approach fix and must be executed at the expiration of this time even if the aircraft has not reached the appropriate MDA.

![Diagram](image-url)
CHAPTER 20
INSTRUMENT LANDING SYSTEM

Section I. GENERAL

20-1. Introduction

The instrument landing system (ILS) is a complex array of radio and visual navigation aids. It is the most efficient system in widespread use for safe landing under the lowest ceiling and visibility conditions permitted by obstruction clearance criteria. Its effectiveness as an approach aid is matched by radar (chap 21), but the preferred system at most major air terminals is the instrument landing system supplemented by radar. More advanced systems have been undergoing tests for several years, but several factors have prevented placing these systems in an operational status.

20-2. Ground Components

a. Basic components. The basic ground components of an ILS are the localizer, glide slope, outer marker, and middle marker. The approach lights are visual aids normally associated with the ILS. Compass locator or precision radar may be substituted for the outer or middle marker. Surveillance radar may be substituted for the outer marker. For Army aircraft, an increase of the published visibility or minimum descent altitude need not be applied under the conditions of runway approach lighting or marker beacon outage.

b. Supplementary Components. The ILS is frequently supplemented by installing one or more of the following approach aids:
 (1) Compass locators (para 20-5f).
 (2) Transmissometers. This device "looks" instrumentally down the instrument runway in the landing direction and either determines the runway visibility by reference to ordinary runway lights or computes the runway visual range (RVR) (para 20-10) by reference to high-intensity runway lights.
 (3) Surveillance and precision radar systems (chap 21).
 (4) Distance measuring equipment (DME). This aid, although normally installed at VOR, tactical air navigation (TACAN), and VORTAC sites, is occasionally colocated with the instrument landing system. With proper airborne receiving equipment, the aviator can read the distance to or from the transmitter at all times.
 (5) Visual approach slope indicator (VASI). The VASI gives visual descent guidance information during the approach to a runway. The standard VASI consists of downwind and upwind light bars that provide a visual glidepath which provides safe clearance of obstructions within the approach zone. Lateral course guidance is provided by the runway or runway lights. Descent, using the VASI, should not be initiated until the aircraft is visually aligned with the runway. Refer to the FAA Airman's Information Manual, Part I, for an up-to-date discussion of the VASI systems and their use.
 (6) Instrument approach lighting systems. Instrument approach lighting systems provide the basic means for transition from instrument flight using electronic approach aids to visual flight and landing. Operational requirements dictate the sophistication and configuration of the approach light system for a particular airport. Refer to the legend of any volume of FLIP instrument approach procedures for a display of various approach lighting systems.
 (a) Condenser-discharge sequenced flashing light system. This instrument approach lighting system is installed in conjunction with the instrument approach light system at some airports which have US Standard "A" approach lights as a further aid to pilots making instrument approaches. The system consists of a series of brilliant blue-white bursts of light flashing in sequence along the approach lights. It gives the effect of a ball of light traveling toward the runway.
 (b) Runway edge lights are used to outline the edge of the runway during periods of darkness and restricted visibility conditions. These light systems are classified according to the intensity or brightness they are capable of producing; they are the high intensity runway lights (HIRL), medium intensity runway lights (MIRL), and the low intensity runway lights (LIRL). The HIRL and MIRL systems have variable intensity controls, whereas the LIRL's normally have one intensity setting.
 (c) In-runway lighting aids. Touchdown zone and runway centerline lighting are installed on some precision approach runways to facilitate
landing under adverse visibility conditions. Taxiways turnoff lights may be added to expedite movement of aircraft from the runway.

(1) Touchdown zone lighting—two rows of transverse light bars disposed symmetrically about the runway centerline in the runway touchdown zone. The system generally extends from 75 to 125 feet of the landing threshold to 3,000 feet down the runway.

(2) Runway centerline lighting—flush centerline lights spaced at 50-foot intervals beginning 75 feet from the landing threshold and extending to within 75 feet of the opposite end of the runway.

(3) Runway remaining lights—are applied to centerline lighting systems in the final 3,000 feet as viewed from the takeoff or approach position. Alternate red and white lights are seen from the 3,000-foot points to the 1,000-foot points, and all red lights are seen for the last 1,000 feet of the runway. From the opposite direction, these lights are seen as white lights.

(4) Taxiway turnoff lights—flush lights spaced at 50-foot intervals, defining the curved path of aircraft travel from the runway centerline to a point on the taxiway.

(d) Runway end identifier lights (REIL). These lights are installed at many airfields to provide rapid and positive identification of the approach end of a particular runway. The system consists of a pair of synchronized flashing lights, one of which is located laterally on each side of the runway threshold facing the approach area.

Note. Consult FLIP IFR Supplement to determine the exact supplementary components of the ILS that are available for a specific airport.

Section II. OPERATION AND FLIGHT USE

20–3. Localizer

a. Location and Signal Pattern (Fig 20–1). The localizer transmitter is located beyond and near the end of the primary instrument runway opposite the approach end. It produces two signal patterns which overlap along the runway centerline and extend in both directions from the transmitter. One side of the signal pattern is referred to as the blue sector, the other as the yellow sector. The “beam” produced by the overlap of the sectors is usually from 4° to 5° wide. The portion of the beam extending from the transmitter toward the outer marker (OM) (fig 20–1), is called the front course. The sectors are arranged so that, when flying inbound toward the runway on the front course, the blue sector is to the right of the aircraft and the yellow sector to the left. While flying inbound on the back course (extending from the transmitter to the left (fig 20–1)), the blue sector is to the left of the aircraft and the yellow sector is to the right. Both the front course and the back course may be approved for instrument approaches; however, only the front course will be equipped with associated compass locators and lighting aids. (Some major airports are equipped with more than one complete ILS system, thus providing a front course for each end of a selected runway. Normally, only one ILS will be operated at a time.) The localizer provides course guidance throughout the descent path to the runway threshold from a distance of 18 NM from the antenna. Proper off-course indications are provided throughout the following angular areas of the operational service volume: (1) to 10° either side of the course along a radius of 18 NM from the antenna, and (2) from 10° to 35° either side of the course along a radius of 10 NM. Generally, proper off-course indications are provided to 90° either side of the localizer course; however, some facilities cannot provide angular coverage to that extent because of siting characteristics or
antenna configurations or both. Therefore, instrument indications of possible courses in the area from 35° to 90° should be disregarded.

b. Receiver Operation. Army VHF navigation receivers will receive the localizer signal in the frequency range of 108.1 MHz to 111.9 MHz. Tuning of the localizer frequency into the receiver will activate the course deviation indicator of the course indicator instrument. The localizer signal received will identify the station by the three letter identification of the station preceded by the letter "I"; e.g. I OZR which identifies the Cairns AAF localizer as printed in the instrument approach chart. The localizer is usually capable of transmitting voice. Reliable reception of the localizer signal will be indicated by activation of the course deviation indicator, disappearance of the "OFF" flag associated with the course deviation indicator, and reception of the coded identifier. No "to-from" indication will be displayed. When a localizer frequency is tuned, the course selector setting has no effect on the course deviation indicator as it does when a VOR frequency is
tuned. However, if the course indicator has a heading pointer, the inbound heading of the ILS course should be set on the course indicator so that the heading pointer will be directional in its operation. Turning on and operation of the localizer receiver will be described in the operator's manual for the aircraft.

c. Localizer Tracking (Fig 20–2). When the aircraft is proceeding inbound on the front course or outbound on the back course, the indications of the course deviation indicator are directional; that is, if the deviation needle is deflected to the right of center, the localizer is to the right of the aircraft and a turn to the right will be required to return to course and center the needle. However, if the aircraft is flying inbound on the back course or outbound on the front course, the deviation indicator is no longer directional; that is, if the deviation needle is deflected to the left, the localizer course is to the right and a turn to the right will be required to return to course and center the needle.

Note. Some aircraft ILS equipment has a reverse sensing capability and the deviation needle is always directional. Some course indicators have the sector colors (blue and yellow) printed on the face just below the course deviation indicator. The deviation needle is always deflected into the colored area corresponding to the color indicated on the ILS approach chart. This aids the aviator in determining the position of the aircraft in relation to the localizer course and the direction of the correction to be applied. The amount of correction to return to the localizer course will depend on the distance between the aircraft and the transmitter and on the direction and velocity of the wind. Also, the aviator must remember that the needle sensitivity when tuned to ILS is different from that of the VOR. Whereas, the needle sensitivity on VOR is a total of 20° (10° either side of the center point), the needle sensitivity is a total of 4° to 5° on the localizer (approximately 2½° either side of the center point). The amount of correction to the localizer course should begin with 5° and be narrowed down to 2° as the transmitter is approached and the signal pattern narrows. These recommended corrections may be modified as necessary until the wind correction is determined.

20–4. Glide Slope

a. Transmitter Location. The glide slope transmitter radiates its signals primarily outward along the localizer front course in the direction of the outer marker (fig 20–3). There are numerous false glide slope signals which are radiated simultaneously with the desired signal. Glide slope indications must be ignored unless the aircraft is at or near the appropriate approach procedure altitude, within the limits of the localizer course, and the approach procedure is specifically named on the approach “ILS.” However, there are some runways at which an additional glide slope transmitter is installed to radiate signals primarily directed outbound on the localizer back course. On runways so equipped, the two glide slopes cannot be operated simultaneously. Glide slope transmitters are located from 400–600 feet to one side of the runway centerline on the approach end.

b. Receiver Operation. Glide slope frequencies are paired with localizer frequencies in predesignated combinations. Some VHF navigation receivers have a separate dial in which the glide slope frequency must be tuned. However, most receivers
will automatically tune the paired glide slope frequency whenever the localizer frequency is tuned. Reliable reception of the glide slope will be indicated by the activation of the glide slope indicator and the disappearance of the “OFF” flag located on the face of the course indicator near the glide slope indicator.

c. Glide Slope Indicator. The indications of the needle are always directional; i.e., if the aircraft is below the glide slope (A, fig 20-4), the needle will be deflected upward from the centered position. The aviator must make a pitch attitude/power adjustment to maintain the airspeed within acceptable limits and to decrease the rate of descent or level off temporarily in order to reintercept the glide slope. If the aircraft is above the glide slope (B, fig 20-4), the pitch attitude/power must be adjusted to maintain the airspeed within acceptable limits and to increase the rate of descent in order to reintercept the glide slope. The aviator should be aware of the obstruction clearance criteria for the final segment of precision approaches so that the need for remaining on course and on or above the glide slope is apparent. Even after visual contact has been established with the approach lights or runway, it is recommended that the glide slope be followed until the aircraft is definitely past the field boundary or is approaching the runway overrun. This will aid in preventing a landing short of the runway. Also, if stratus or fog is momentarily flown through, the aviator may have the illusion that the pitch attitude of the aircraft has moved upward. If the glide slope is still being flown, the aviator can tell at a quick glance that his pitch attitude is normal and has not changed. This will prevent him from making a pitch adjustment downward and cause the aircraft to contact the ground short of the runway at a high rate of descent.

20-5. Marker Beacons and Compass Locators

a. Marker Beacons. A marker beacon is a radio facility capable of transmitting a signal in a vertical direction only. Its signal is received only while flying over the facility (fig 20-5) within the signal radiation pattern. The primary purpose of the marker beacon is to provide the aviator with a definite radio position fix. The horizontal cross section of the vertical radiation pattern of a marker beacon used with ILS is the elliptical pattern. It is quite narrow so that an aircraft will pass through the pattern rapidly, thereby insuring the accuracy of the fix. Since all marker beacons transmit on a frequency of 75 MHz, the receiver is preset to a 75 MHz frequency to receive signals from any beacon. The marker beacon signal is modulated with a coded (or continuous) audio frequency for identification purposes. The marker beacon receiver is arranged so that the signal can be either heard in the headset or seen as a marker beacon light on the aircraft’s instrument panel, or both.
b. Outer Marker. The outer marker (OM) normally indicates a position at which an aircraft at the appropriate altitude on the localizer course will intercept the ILS glidepath (fig 20-6). The OM is identified with continuous dashes at the rate of two dashes per second.

c. Middle Marker. The middle marker (MM) indicates a position at which an aircraft is approximately 3,500 feet from the landing threshold (fig 20-6). This will also be the position at which an aircraft on the glide slope will be at an altitude of approximately 200 feet above the elevation of the touchdown zone. The MM is identified with alternate dots and dashes keyed at the rate of 95 dot/dash combinations per minute.

d. Inner Marker (IM). The inner marker, where installed, will indicate a point at which an aircraft is at a designated decision height (DH) on the glidepath between the middle marker and the landing threshold. This is for category II ILS approaches. The IM is identified with continuous dots keyed at the rate of six dots per second.

e. Back Course Marker. A back course marker, where installed, normally indicates the ILS back course final approach fix where approach descent is started. The back course marker is identified with two dots at a rate of 72 to 95 two-dot combinations per minute.

f. Compass Locators. Compass locator transmitters (fig 20-7) are often situated at the middle and outer marker sites. They have a power of less than 25 watts, a range of at least 15 miles, and operate between 200 and 416 kHz. At some locations, higher powered radio beacons, up to 400 watts, are used as outer marker compass locators. These generally carry Transcribed Weather Broadcast information. Compass locators transmit two-letter identification groups. The locator outer marker (LOM) transmits the first two letters of the localizer identification group, and the locator middle marker (LMM) transmits the last two letters of the localizer identification group.

20-6. Arrival for ILS Approach

Figure 20-8 shows the Cairns AAF instrument landing system (ILS) and surrounding airways and related facilities. Figure 20-9 shows the ILS Runway 6 approach chart for Cairns AAF. Unless being radar vectored to the ILS final approach course (chap 21), aircraft inbound to an airport for an ILS approach will usually be cleared via a feeder route from a fix on their route of flight to the locator outer marker (LOM) to join the localizer course. Figure 20-9 shows several feeder
routes to the Cairns LOM. These routes are indicated by an arrow to the LOM and contain information concerning the course from the en route fix to the LOM, distance, and minimum altitude. If ATC clears the aircraft for the ILS approach prior to reaching the LOM, the aircraft may descend to the minimum altitude for the feeder route if the aviator so desires. If holding instructions are received, the aircraft will maintain the altitude assigned by ATC. Prior to reaching the en route fix and starting the feeder route, the aviator should tune the ADF receiver to the frequency of the compass locator, providing that receiver is not required for other navigation. Tracking on the published feeder route should be started as soon as practicable after departing the en route fix. While on the transition, the remaining navigation receivers should be tuned and placed in proper operation for the ILS approach. Passage of the LOM will be indicated by the ADF bearing pointer and by reception of the signal from the outer marker. If the ILS has been tuned, the course deviation indicator will move rapidly from one side to the other as the localizer course is crossed.

20-7. Front Course ILS Approach

After LOM passage, the aviator will turn outbound to parallel the localizer course (if a procedure turn symbol is depicted on the localizer course) or make the proper holding pattern entry if a holding pattern is depicted and the procedure turn is not authorized. If a procedure turn is depicted, the aviator may descend to the procedure turn altitude, fly outbound the required time depending on the winds and altitude to be lost, while remaining within the designated distance. Upon completion of the procedure turn by intercepting the localizer course, the aviator may descend to the altitude indicated for interception of the glide slope. If the aviator must start the approach from a depicted holding pattern, he will descend to the procedure turn altitude while flying the required holding pattern. Upon intercepting the approach course inbound, he may then descend to the minimum altitude that is to be used to intercept the glide slope. This will be below the glide slope. The final approach descent will begin when the aircraft intercepts the glide slope. The aviator should note the time of LOM passage. He can use this time to determine the missed approach point in the event reception of the glide slope is interrupted and the approach must be continued as a localizer approach. If, at the decision height (DH) or at the MDA (for circling to land) the runway approach threshold, approach lights, or other markings identifiable with the approach end of the runway are not clearly visible to the aviator, a missed approach will be initiated. After the missed approach is satisfactorily initiated, the aviator should report that the approach has been missed and request clearance for specific action; i.e., to alternate airport, for another ILS approach, or a GCA (if minimums are lower).

20-8. Localizer Only Approach

The localizer only approach is flown the same as the front course ILS approach with the following exceptions:
a. The minimum altitude to the final approach fix (FAF) must be observed.

b. Timing for determination of the missed approach point should begin at the final approach fix (FAF).

c. Descent to MDA is initiated upon passing the LOM. The descent should be started without delay and continued at a rate that will cause the aircraft to reach the MDA prior to the missed approach point. This will aid the aviator in arriving at the MDA with enough time/distance remaining to identify the runway environment and descent from MDA to touchdown at a normal rate for his aircraft.

d. The aviator uses the MDA for a localizer approach (fig 20-9), or for circling, according to the approach clearance received.

Figure 20-9. Typical approach chart.
e. Missed approach is initiated when the computed time from the localizer (LOC) FAF to missed approach point (MAP) has elapsed and visual contact has not been established with the runway environment.

20—9. Localizer Back Course Approach

The localizer transmitter produces both a front course and a back course (fig 20-1). The back course is frequently used as an additional approach course (fig 20-10). Normally, a glide slope transmitter is not installed with the intent of radiating signals toward the localizer back course. Therefore, the back course approach is usually a nonprecision approach, and is flown in the same manner as the localizer only approach (para 20–8). A VOR radial or a marker beacon is usually used to establish the final approach fix. There is usually no approach lighting system associated with
the back course approach so visual contact with
the runway environment may be more difficult
than during a front course approach. The aviator
must remember that the course deviation indica-
tor is directional outbound and nondirectional
inbound on the back course. When using a course
indicator that has a heading pointer, the pub-
lished heading of the front course should be set in
the course selector. The heading pointer will be in
the bottom half of the course indicator when
inbound on the back course. Turning to place it
toward the course deviation indicator will then
correct the aircraft toward the approach course.

20–10. Runway Visual Range (RVR)

Where available, runway visual range is the con-
trolling visibility for straight-in landings from an
instrument approach. Figure 20–11 shows the
published DH and RVR, for a straight-in ILS
approach, as being 207/24. This means that an
RVR value of 2,400 feet is authorized as a mini-
mum for beginning the approach. However, the
aviator cannot descend below an indicated alti-
tude of 207 feet unless visual contact has been
made with the runway environment. The aviator
must be aware that the reported RVR may not be
representative of the range at which he will sight
the runway. In fact, the aviator’s slant range
visibility may be considerably less than the re-
ported RVR. The nose of the aircraft, particularly
if a nose-high pitch attitude is being maintained,
may also block out the sight of approach lights,
terrain, and runway end environment. Knowledge
of these various factors will aid the pilot in mak-
ing a safe, smooth transition from instrument to
visual flight for a landing.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-ILS-5</td>
<td>207/24</td>
<td>200</td>
<td>(200-1/2)</td>
<td></td>
</tr>
<tr>
<td>S-LOC-5</td>
<td>360/24</td>
<td>353</td>
<td>(400-1/2)</td>
<td></td>
</tr>
<tr>
<td>S-VOR-5</td>
<td>400/24</td>
<td>393</td>
<td>(400-1/2)</td>
<td></td>
</tr>
<tr>
<td>CIRCLING</td>
<td>440-1</td>
<td>460-1</td>
<td>460-1 1/2</td>
<td>560-2</td>
</tr>
<tr>
<td></td>
<td>433 (500-1)</td>
<td>453 (500-1)</td>
<td>453 (500-1 1/2)</td>
<td>553 (600-2)</td>
</tr>
</tbody>
</table>

Figure 20–11. Approach minimums based on RVR.
CHAPTER 21
RADAR

Section I. AIR TRAFFIC CONTROL RADAR

21—1. General

a. A great advantage of radar air traffic control over conventional (nonradar) control is that radar offers very precise data on aircraft location; consequently, the amount of separation required between aircraft can be greatly reduced by the use of radar.

b. Major air traffic control uses of radar include—

(1) Resolving en route traffic conflicts and providing en route traffic advisories.

(2) Expediting arrivals and departures in the terminal area.

(3) Controlling instrument approaches.

(4) Monitoring nonradar instrument approaches (ILS, ADF, and VOR).

(5) Radar vectoring as a supplementary means of navigation to expedite traffic, to avoid traffic conflicts, or to avoid observed hazardous weather when possible.

(6) Providing limited radar weather information and radar weather advisories.

Caution: Pilots should use extreme caution when using air surveillance radar to avoid hazardous weather. Air traffic control radar is not designed to show weather. In fact, it has circuitry for eliminating weather presentations which interfere with the primary function, which is the observation of air traffic. See note following paragraph 21—17.

c. Virtually all radar air traffic control relies on one of the types of surveillance radar discussed in paragraphs 21—2 and 21—3.

21—2. Air Route Surveillance Radar (ARSR)
The use of long-range radar for control of traffic by the air route traffic control centers (ARTCC's) is standard procedure. The range of this type of radar is approximately 200 NM, with altitude coverage to 40,000 feet. Since the area of control of an ARTCC normally is more than 200 NM, more than one radar is required to give complete coverage.

a. ARSR indicators normally are centrally located in the air traffic control center. However, the antennas are remotely located at outlying sites selected to produce the best radar coverage of the area. An outlying radar unit can serve two or more centers simultaneously.

b. Either transparent map overlays or electronically displayed video maps are normally used on the controller's scope to indicate the location of radio navigational aids, airways, and reporting points. In effect, the controller can see all of the air traffic within his area of responsibility.

21—3. Airport Surveillance Radar (ASR)
The range of ASR is usually a 30- to 50-NM radius from the antenna site. An overlay on the scope or a video map (para 21—2b) shows facilities and landmarks in the area. The two basic purposes of ASR are (1) for radar approaches (para 21—9) and (2) for radar control of air traffic in the terminal area by approach control facilities.

Section II. RADAR AIR TRAFFIC CONTROL PROCEDURES

21—4. General
In this section various types of radar control services are discussed and the general principles involved in each are emphasized. For details of the techniques and procedures used by radar controllers, see TM 11—2557—29 (FAA publication 7110.8) and TM 11—2557—30 (FAA publication 7110.9).

21—5. Identification

a. All radar air traffic control services depend basically upon the positive identification of the aircraft target being controlled. Radar control is lost the moment identification is lost. The controller identifies a primary or radar beacon target by—
(1) Observing a departing aircraft target within 1 mile of the takeoff runway end.

(2) Observing a target whose position with respect to a fix corresponds with a direct position report received from an aircraft and the observed track is consistent with the reported heading or route of flight.

(3) Observing while a target makes an identifying turn (or turns) of 30° or more, provided both of the following conditions exist:

(a) Except in the case of a lost aircraft, a pilot position report is received which assures him that the aircraft is within radar coverage and within the area being displayed.

(b) Only one aircraft is observed making those turns.

(4) Receiving a coded transmission from a radar beacon transponder in the controlled aircraft (para 21-13).

b. If radar identification is lost, the radar controller immediately advises the aviator. If necessary, he then issues instructions and clearances to the aviator to permit resumption of conventional control.

21—6. Transfer of Radar Control (Handoff)

Transfer of radar control (handoff) from one controller to another involves positive identification of the target aircraft by the receiving controller. Methods for transferring radar control are as follows:

a. The controller physically points out the target to the receiving controller.

b. The controller informs the receiving controller of the following:

(1) The distance and bearing of the target from a fix or transfer point shown on both radar scope displays.

(2) The observed tracks of the target, unless already known.

c. Radar beacon transponder is used (para 21-13).

21—7. En Route Control Procedures

a. Separation. Within 40 NM of the radar site, aircraft under positive radar control are provided a minimum of 3 NM horizontal separation between all identified targets. If the controlled aircraft are more than 40 NM from the radar site, the required separation is 5 NM because target-distance-fixing capability is not as precise. At this distance, two targets which are close together (e.g., 3 NM) can appear as one on the radarscope. Aircraft normally are kept a minimum of 1.5 NM away from the boundary of adjacent airspace when less than 40 NM from the antenna. When 40 NM or more from the antenna, the minimum is 2.5 NM. Horizontal separation is provided between aircraft flying at the same altitudes. The radar controller has a number of different altitudes and flight levels under his jurisdiction. Separation can also be effected by assignment of different altitudes or flight levels.

b. Routing. Established airways are used by radar controllers for en route traffic. However, if required minimums of separation and obstacle clearances are met, controllers may alleviate traffic conflicts by using radar vectors which depart from established routes. Aviators may request deviation from established routes to avoid hazardous weather conditions (para 21-16). When the controller vectors the aircraft off the assigned route, he will normally specify the expected routing from that point. If communications fail, the aviator should return to the assigned route via the routing given by the controller.

c. Altitude. In some cases, en route radar provides the controller with target altitude data; in other cases, the controller must rely on the aviator's reported altitude. In either case, altitude assignments are made in a manner similar to those of nonradar traffic control.

(1) In certain cases, the radar controller may assign an altitude below the minimum en route altitude (MEA) for the airway. However, an altitude assignment below the minimum obstruction clearance altitude (MOCA) will not be made.

(2) If the controller assigns an altitude below the MEA, he will realize that the aircraft may be unable to navigate because of the possibility of passing below the minimum reception altitude of the radio facility. Therefore, the radar controller will navigate the controlled aircraft past all obstacles by offering the aviator radar vectoring service.

21—8. Departure and Arrival Control Procedures

a. Departures. Wherever practicable, radar departure routes are established as standard instrument departures (SID's). Channelized altitudes are placed under the jurisdiction of radar departure control. The use of standard departure routes and altitudes reduces the amount of coordination between departure/arrival control and tower (local VFR control) facilities.

(1) Departure routes normally are based on the use of available radio facilities and do not require radar service for navigation. However, for an operational advantage, the controller may
provide vectoring service for navigation; e.g., to achieve adequate separation, noise abatement, avoidance of hazardous weather, or for other reasons. If an aviator is given a radar departure which deviates from established SID's or routes, he will be advised by the controller of the route or SID to which the aircraft is being vectored.

(2) Radar separation for departures is maintained as required by traffic conditions and within the saturation limits of the radar facility. Handoff to en route radar or transition to nonradar separation is accomplished as traffic conditions permit. In all cases, the transition to nonradar separation is completed well within the limits of radar coverage.

b. Arrivals.

(1) Routing to nonradar facilities, such as ILS, ADF, and VOR, can be accomplished with radar control of arriving aircraft. Radar feeder routes may be established to "feed" the traffic to the final approach fixes as required.

(a) A radar feeder route is similar to a conventional nonradar feeder route (chap 18). The nonradar feeder route is usually a straight course from an outer fix to an approach fix with bearing, distance, and minimum altitude published. However, a radar feeder route may employ several "legs" with different courses and different minimum altitudes on the legs. This multilegged route is also referred to as the radar pattern (random vectors). In some cases, it may resemble a conventional VFR traffic pattern with downwind and base legs.

(b) The radar feeder area and required obstacle clearance are different from those required for nonradar feeder routes. In general, radar feeder routes allow greater airspace utilization because (1) known obstacles can be plotted on the overlay map of the radarscope, and (2) identified aircraft targets can easily be provided with adequate obstacle clearance.

(c) Provided the radar controller complies with the minimum separation and obstacle clearance standards required by the Air Traffic Control Procedures manual, he can vary radar traffic patterns to resolve conflicting traffic conditions. If a nonradar final approach is being used, the controller can use radar vectoring to the final approach course.

(2) If the final approach of the aircraft is to be controlled by radar (ground controlled approach (GCA)), the vectoring to the final approach course is the preliminary part of the GCA. The radar pattern leading up to the final approach course can assume any configuration which takes into account the location of landing and navigation facilities, arrival routes, and the airport.

(a) The GCA final approach may be one of two type (para 21-9). However, the type used has little effect on the radar pattern leading to the final approach segment, except perhaps at the point where the final approach course is intercepted.

(b) Patterns are established from outer fixes to intercept the final approach course. For typical approach patterns see figure 21-1. While the aircraft is in the radar pattern, prior to the time it is turned on final approach, the radar controller issues appropriate advisories to assure effective completion of the radar approach (para 21-9).

21-9. Radar Approaches

a. General. The two types of radar final approaches are airport surveillance radar (ASR) and precision approach radar (PAR). The type employed depends on the equipment available, landing runway, weather, and traffic conditions. ASR equipment provides the controller with positive data on range and azimuth of the aircraft target. However, with PAR equipment available, the final approach can be more precisely controlled. To the controller the basic advantages of PAR are that he can determine the exact aircraft position in relation to the glidepath, and the range and azimuth can be determined with greater accuracy. In general, where PAR is employed approach minimums are lower.

b. Approach Information. Unless the aviator states that he has received the automatic terminal information service (ATIS) broadcast, the controller will issue the following information:

(1) Altimeter setting.

(2) Ceiling and visibility if ceiling at the airport of intended landing is reported below 1,000 feet or below the highest circling minimum, whichever is greater, or if the visibility is less than 3 miles.

(3) Any special weather observations.

(4) Pertinent information on known airport conditions if they are considered necessary to the safe operation of the aircraft concerned.

(5) Lost communication procedures may be given for training purposes.

c. Before Starting Final Approach. The controller will issue the following information:

(1) Type of approach and runway to which the approach will be made.

(2) Aircraft position at least once. In addition, he will advise the aviator to perform landing check.

d. Final Approach—ASR. On final approach, the aviator will be given the frequency and told to
Figure 21-1. Radar patterns to GCA final approach.
contact the final controller. The final controller will make a radio check with the aviator and then advise him not to acknowledge further transmissions. Heading corrections will be issued as required to keep the aircraft on the final approach course. The controller must transmit at least once every 15 seconds or the aviator will assume that he has lost communications with the controller. If a full stop landing is to be made and any portion of the final approach conducted under IFR conditions, a wheels-down check will be made and the missed approach instructions issued. Advance notice of where the descent will begin and the straight-in MDA will be furnished. When the aircraft reaches the descent point, the controller will instruct him to descend to the MDA. Course guidance and distance from the runway, airport, or missed approach point (MAP) will be furnished on the remainder of the approach. When approach guidance is discontinued, the aviator will be advised of his position and instructed to execute a missed approach unless the runway, approach or runway lights, or airport is in sight.

e. Final Approach—PAR. After being turned on final, the transfer to final controller, final controller radio check, and course guidance will be issued as in ASR final approach, except that the controller must transmit at least once each 5 seconds. The wheels-down check will be made and missed approach instructions issued if required (d above). Approximately 10 to 30 seconds before final descent, the aviator will be informed that he is approaching the glidepath. The decision height will be issued only if requested by the aviator. At the point where final descent is to start, the aviator will be instructed to begin descent. Glidepath and course information and distance from runway will be issued until the aircraft is over the landing threshold. The aviator will be informed when he is at decision height.

f. No Gyro Radar Approaches. These approaches, ASR or PAR, will be flown as outlined above, except the controller will issue instructions as to when to start and stop the turns (headings will not be issued), and when to make half-standard rate turns on the final approach.

21–10. Monitoring of Nonradar Approaches

a. If the PAR final approach course coincides with the NAVAID final approach from the final approach fix to the runway and one of the following conditions exists, aircraft conducting precision or nonprecision approaches will be monitored by PAR:

(1) The reported weather is below basic VFR minima.

(2) Nighttime.

(3) Request of the pilot.

b. Surveillance radar will not be used to monitor nonradar approaches.

c. The controller will inform the aviator that his approach will be monitored and state the frequency to be used if it is not the same as the communications frequency used for the approach. In addition, he will—

(1) Advise the aviator executing a nonprecision approach that glidepath advisories are not provided.

(2) Inform the aviator when he is passing the final approach fix.

(3) Advise the aviator when his aircraft goes well above or below the glidepath, well left or right of the course, and whenever it exceeds the radar safety limits. These will be repeated if no correction is observed.

(4) If after repeated advisories the aircraft is observed proceeding outside the safety limits or a radical target deviation is observed, advise the aviator that if he is unable to proceed visually, to make a missed approach.

21–11. Expanded Radar Service for VFR Traffic

As IFR traffic volume and radar capability permit, future radar service will increase assistance to VFR traffic. As more airports and control centers become equipped with modern radar, this expanded service will become widespread. For the types of service and the existing procedures to employ them, see current navigation publications. Among these services to VFR traffic are the following:

a. Sequencing of arriving traffic.

b. Traffic advisories.

c. Weather advisories.

21–12. Radar Assistance—Loss of Communications

Aviators who have lost radio communication can alert radar stations and receive assistance by flying a specified triangular pattern. This procedure can be used in situations where the radar station might otherwise be unaware of the communications failure. If, however, the aircraft is operating on an IFR flight plan in controlled airspace, standard loss-of-communication procedures, as prescribed in current navigation publications, should be used. If the aviator elects to alert a radar station by flying a triangular pattern (fig 21–2), the following rules apply:
a. If receiver only is operating, the aviator flies a triangular pattern to the right ((A), fig 21-2) and holds each heading for 2 minutes (1 min for jet aircraft). A minimum of two such patterns must be completed before resuming original course, then the pattern is repeated at 20-minute intervals. When the triangular pattern is observed by a radar controller and positive identification has been made, the controller follows normal procedures except that his instructions are given in a way that will enable the aviator to answer with aircraft turns.

b. If transmitter and receiver are both inoperative, the aviator flies a triangular pattern to the left ((B), fig 21-2) as in a above. When this pattern is observed by a radar controller, the controller dispatches an escort aircraft to intercept the flight if possible.

\[
\text{BEGIN } 1^\frac{1}{2} \text{° PER SECOND} \\
120^\circ \text{ LEG TURN RIGHT.}
\]

\[
\text{BEGIN } 1^\frac{1}{2} \text{° PER SECOND} \\
120^\circ \text{ LEG TURN LEFT.}
\]

(A) TRANSMITTER INOPERATIVE.
(B) TRANSMITTER AND RECEIVER INOPERATIVE.

Figure 21-2. Triangular pattern to indicate loss of communications.

Section III. TRANSPONDER OPERATIONS

21–13. Use of Transponders

a. There are two basic types of airborne transponders having select code capability on mode 3. One has a 64 code two-digit select capability and the other has a 4,096 code four-digit select capability. Both types are compatible with and responsive to ATC ground interrogation equipment. The basic operational difference is that the 64 select code transponder transmits only the first two digits of the 4,096 select code scale.

b. When filing a domestic IFR flight plan (DD Form 175 or equivalent), pilots will indicate the radar beacon transponder or special navigation equipment capability or limitation by adding a slant and the appropriate symbol immediately following the aircraft designation, i.e., CH-47/T, T-42/A, etc. Refer to Airman’s Information Manual (AIM) or FLIP to find appropriate code letters.

c. Transponders will be operated in “STBY” while taxiing for takeoff and “OFF” after landing.
d. In order to standardize the system, air traffic control personnel will use a four-digit code designation when assigning codes. When a four-digit code is assigned to an aircraft which has only a 64 code two-digit capability, only the first two digits are used. Example: Code 2100—use code 21; code 0700—use code 07; etc.

Note. Pilots should be careful not to reply on any code not specifically assigned by a controller. To do so could result in erroneous target information on the controller's scope.

e. For operation of the transponder, see operator's manual for appropriate aircraft.

21-14. Phraseology
Radar beacon code work phraseologies used by ATC controllers in air-to-ground communications and expected pilot action under specified conditions are as follows:

a. SQUAWK (number)—Operate transponder on designated code in mode 3.

b. IDENT—Active I/P switch.

c. SQUAWK (number) AND IDENT—Operate transponder on designated code in mode 3 and activate I/P switch.

d. SQUAWK STANDBY—Switch transponder to "STANDBY" position.

e. SQUAWK LOW/NORMAL—Operate sensitivity as directed. Transponder is operated in "NORMAL" position unless ATC specifies "LOW."

f. SQUAWK ALTITUDE—Activate mode C with automatic altitude reporting.

g. STOP ALTITUDE SQUAWK—Turn off altitude reporting switch and continue transmitting mode C framing pulses. If your equipment does not have this capability, turn off mode C.

h. STOP SQUAWK (mode in use)—Switch off designated mode.

i. STOP SQUAWK—Switch off transponder. (STANDBY recommended.)

j. SQUAWK MAYDAY—Operate transponder in the "EMERGENCY" position—mode 3, code 7700.

k. SQUAWK VFR—Operate transponder on code 1200 or 1400 as appropriate for your altitude.

Section IV. GROUND WEATHER RADAR

21-15. General
In addition to traffic control, there are other applications of radar which contribute to efficient aviation operations. The National Weather Service, the USAF, and USN operate radar storm detection sites. Some ARTC centers have access to radar sets designed for weather observation. As a result of these efforts, a large part of the continental United States and some overseas areas provide radar weather service.

21-16. USAF Pilot to METRO Service (PMSV)
Direct communication service between aviators and forecasters or observers is provided at many locations by the USAF. At locations where the service is available, the aviator can call METRO on a specified frequency. The forecaster or observer will reply to the call and can furnish the aviator an inflight weather advisory by a qualified weather forecaster or observer who has access to weather radar coverage of the flight area. While operating on an IFR flight plan, the aviator must obtain permission from the controller to leave the control frequency long enough to obtain a weather advisory. Subsequent vectoring, which may be necessary to avoid hazardous storm areas, can be coordinated between observer or forecaster, aviator, and controller. For METRO service listings and frequencies, consult current navigation publications.

21-17. FAA Weather Radar Advisories
In some cases, FAA facilities obtain weather information from weather radar sets of the individual facility and relay this information to the control center or flight service station for broadcast to aviators as a weather advisory. In other cases, the traffic controller's facility may have a weather radar set, or the controller may issue a weather advisory to the aviator based on weather data obtained from the air traffic control radar set.

Note. Traffic control radar sets, however, deemphasize weather phenomena since the image of storm areas and precipitation tends to obscure aircraft targets; consequently, the sets are designed to "filter out" echoes from storms and precipitation. The resulting display on these sets thus does not portray, in great detail, the existing weather phenomena; therefore, the aviator should obtain weather data from a weather radar source if possible.
CHAPTER 22
TACTICAL INSTRUMENT FLIGHT

Section I. GENERAL

22-1. Purpose and Scope
The purpose of this chapter is to provide information for training rotary-wing aviators in tactical instrument flight. Discussed within this chapter are the considerations for employment of tactical instrument flight, procedures for construction of tactical instrument airways and safety zones, and a recommended program of instruction for tactical instrument flight training.

22-2. Prerequisites
This chapter does not address specifics about airspace management, instrument flying, navigational procedures, map reading, and instrument flight techniques. It is understood that the aviator is knowledgeable in these subjects prior to being trained in tactical instrument flight. If, however, additional training is required in these areas of concern, refer to FM 1-60, Airspace Management and Army Air Traffic in the Combat Zone; FM 1-5, Instrument Flying and Navigation for Army Aviators; and FM 21-26, Map Reading. The aviator should be instrument qualified and proficient before undergoing tactical instrument flight training.

22-3. Threat Awareness
a. To perform tactical instrument flight safely, you must have a thorough knowledge of the enemy situation and air defense capability. With this information and a knowledge of where and when a covering force is employed, an enroute course and flight altitude can be planned which may decrease the vulnerability of the aircraft to Threat weapons. The degree of vulnerability that remains after applying the procedures contained herein must be taken into consideration before conducting instrument flight in a high threat environment. You must also be aware that a friendly threat exists over the battlefield. Unless the proper identification, friend or foe (radar) (IFF) code and flight corridors are used, there is a danger of being destroyed by friendly air defense weapons.

b. Additionally, you must recognize the enemy’s electronic warfare (EW) capability. This threat may be used to degrade the radio signal of the navigational aids or increase the enemy’s threat acquisition capability. The success you achieve on the battlefield will be dependent upon how you learn to cope with the enemy threat. You must use every means to avoid, suppress, or destroy the enemy air defense and electronic warfare systems. FM 90-1, Employment of Army Aviation Units in a High Threat Environment, and TC 1-88, Aviator’s Recognition Manual are two publications that identify the threat you may encounter on the high threat battlefield.

Section II. TACTICAL EMPLOYMENT CONSIDERATIONS

22-4. Introduction
To provide round-the-clock aviation support, aviation units must be capable of performing tactical instrument flight in areas where terrain flight cannot be performed due to meteorological conditions.
22-5. What is Tactical Instrument Flight?

Tactical instrument flight will only be performed when meteorological conditions at origin or enroute preclude nap-of-the-earth (NOE) flight.

Tactical instrument flight is defined as "flight under instrument meteorological conditions in an area directly affected by the Threat." It is used as a means to complete an assigned mission that is critical in nature when meteorological conditions at origin or enroute preclude NOE flight. Tactical situations can be expected which require single-ship operations to be conducted within the threat environment during instrument meteorological conditions. In order to survive during such missions, aviation units must operate under instrument conditions at altitudes well below the altitudes specified in civil instrument flight rules. While standard civil rules may be compatible with threat conditions in rear areas, they will be inadequate for forward areas. Tactical instrument flight provides the means to insure maximum support of ground tactical units by allowing aircraft to move about the battlefield even in adverse weather under high threat conditions. Survivability will require techniques which go beyond the use of today's conventional airways and navigational aids (NAVAID). Sophisticated approach procedures and equipment will not be available. Instead, instrument flight will be performed under marginal conditions requiring the highest level of aviator proficiency rather than equipment. Aircraft will operate routinely at reduced altitudes with minimum navigational aids and minimum air traffic control facilities and regulations. Increased dependence on preflight planning and aircrew proficiency will be essential to accomplish the mission using the tactical instrument mode of flight.

Threat weapons dictate where tactical instrument flight will be performed.

22-6. Training

Tactical instrument flight can be successfully accomplished through diligent and thorough training of aircrews, air traffic management, and pathfinder personnel. Through testing, training, and practice, the capability can become a reality. Tactical instrument flight training not only should familiarize aviators with the principles and employment of tactical instrument flight in the high threat environment, it must teach them to execute an instrument flight and approach into a landing zone (LZ) using minimum electronic communication and navigation devices with confidence. Unit training must be oriented toward accomplishment of the unit's mission under adverse weather and threat conditions with a minimum of assistance from electronic communication and navigation devices. Air traffic management and pathfinder personnel, as well as aircrews, also must be integrated into the training. Units must incorporate tactical instrument functions into their everyday missions. Flying at lower altitudes, minimal use of available navigation and communication equipment, detailed premission planning, and postmission debriefing are training practices that can be used on a routine basis during normal operations. Training must emphasize flexibility in order for aviation elements to be able to respond quickly and reliably in a wide range of adverse weather situations.

22-7. Principles of Employment

Because tactical instrument flight is performed under marginal conditions, greater responsibility is placed upon the aviator for planning and flight-following. When operating under Federal Aviation Administration (FAA) control, you are issued an instrument meteorological conditions (IMC) enroute map. These maps identify the location of navigational aids, headings, and altitudes. Also, the flight-following procedures are identified in Army regulations (AR) and publications. When performing tactical instrument flight, you must determine all this information. The principles listed below must be considered in planning and conducting tactical instrument flight.

a. Threat Avoidance. To minimize the vulnerability of the aircraft to threat weapons, tactical instrument flight can best be accomplished when enemy forces are conducting retrograde operations...
or when friendly covering forces are deployed forward of the forward edge of the battle area (FEBA). The width and depth of a penetration by friendly forces will determine how far forward tactical instrument flight can be performed safely. The distance the covering force is deployed forward of the FEBA will also affect the distance threat weapons can engage aircraft operating in friendly airspace. Normally, antiaircraft artillery weapons cannot engage aircraft along the FEBA when the covering force is deployed; however, detection by the weapons system is possible. The primary threat to aircraft conducting tactical instrument flight in the area along the FEBA will be the air defense missile. To degrade the effectiveness of these weapons, suppression to include radio jamming, artillery fires, and chaff should be used when the mission is being flown.

b. Flight Clearance and Flight-Following Procedures. Whenever tactical instrument flight is planned, you must know the air traffic control procedures to be followed. The procedures to be used will be determined by the area in which the flight is conducted and whether communications can be established with an air traffic control (ATC) facility. The following are examples depicting specific areas and flight-following procedures. The purpose of each procedure is to maintain effective control of the airspace over the battlefield; however, the control measures must not cause delays in mission employment and must not restrict the movement of aircraft about the battlefield.

(1) Rear area to tactical operations area. When flying from a rear area to a tactical operations area, maintain contact with the ATC facility as long as possible and then assume responsibility for making contact with other tactical forward units for flight-following.

Air traffic control procedures are determined by your location on the battlefield.

(2) Tactical operations area to rear area. You serve as your own initial clearance authority and attempt to make contact with ATC elements en route. The flight should follow closely the previously planned and coordinated flight plan.

(3) Flight initiated from unit heliport or airfield.

(a) Clearance for tactical instrument flights is secured from the division Flight Coordination Center (FCC) element through the company operations prior to takeoff if communications exists.

(b) When radio contact is not possible or feasible, contact the ATC elements by landline for flight filing and clearance prior to takeoff.

(4) Flight originating from a tactical site.

(a) In the event tactical instrument flight is required from a forward tactical location, such as a forward arming and refueling point (FARP), and communications cannot be established with an ATC facility, you must serve as your own initial clearance authority.

(b) As soon as practical after the flight is initiated, you should attempt to establish radio contact with an ATC element or a ground tactical unit to relay the flight plan. You should follow the original tactical instrument plan as closely as possible until either direct contact with an ATC element is made or a ground unit relay is established.

(5) Inflight transition from terrain flying to tactical instrument flight. When the tactical mission requires the transition from visual meteorological conditions (VMC) to tactical instrument flight, you must carefully analyze your map to select a route and altitude to provide obstacle and terrain avoidance.

(a) When communication with an ATC element is not possible, you serve as your own clearance authority until direct communication with an ATC element is made or contact with a ground unit relay is effected.

(b) Where communication with an ATC element is possible, report location and intended flight plan. Maintain direct ATC communications as long as possible until flight termination. If enroute communication is lost, follow the reported flight plan.
as closely as possible until contact is regained—either direct or through a relay—or the flight is terminated. If communications with an ATC element cannot be reestablished, flight-follow with a ground tactical unit.

(6) Flight in a severe electronic warfare threat or radio silence environment.

(a) Of necessity, much of tactical flight will be conducted in a severe EW threat environment. To avoid electronic detection in forward areas, NAVAIDs must be restricted to operation only when they are to be used, and then only intermittently. In order to avoid detection and destruction, the electronic signature of navigational aids and aircraft must be kept to a minimum, thereby making radio silence a requisite for mission accomplishment.

(b) You should use landline communications when available for coordinating and clearing tactical instrument flights with an ATC element prior to takeoff. If landline communication is not possible, use secure radio channels. Close initial coordination with the ATC element is essential prior to initiating the flight to eliminate unnecessary radio communications during flight.

(c) During a radio silence environment, voice radio communication for navigation and flight-following is not possible. You must coordinate in detail prior to takeoff, when possible; serve as your own clearance authority during inflight transitions from VMC to tactical instrument flight; and often operate a flight-following facility or unit while en route.

22-8. Flight Altitudes

Flight altitudes will be dictated by the enemy air defense threat. The limits will be less than those specified in AR 95-1 and may be as close to the ground as the terrain obstacles permit. Figure 22-1 shows an example of how the air defense threat will appear on the modern battlefield. The illustration graphically shows the relationship of standard instrument flight and tactical instrument flight to

Figure 22-1. Threat profile.
the air defense threat and terrain obstacle clearance considerations. The overriding concern in tactical instrument flight is to remain below the enemy air defense threat and continue to maintain a safe altitude above terrain obstacles in order to complete the mission. You can use instrument meteorological conditions (IMC) and procedures in rear areas where the effective range of the enemy air defense missiles and other weapons are not a threat; however, you may be within the range of the enemy early warning and tracking radar. It is important that you are aware that the aircraft is within the radar range even though you are still outside the effective range of the enemy air defense missiles and other weapons. Although you may be beyond the range of ground-based weapons, you may be engaged by enemy aircraft.

a. As you continue to move forward toward the FEBA, you will come within the effective range of the air defense weapons. At this point, you must remain low enough to avoid acquisition by the early warning and tracking radar. In doing so, you must reduce the flight altitude to a level below the enemy threat, yet high enough to provide a safe clearance of terrain obstacles. As you fly toward the FEBA, the capability of the enemy radar to acquire the aircraft will continue to increase even at lower levels. You must continue to adjust the flight altitude and route accordingly to remain below this threat or to be masked by the terrain.

b. Upon reaching the forward area or the destination point, you will use a tactical instrument beacon to make the approach if visual flight conditions are not encountered. If visual conditions are encountered at the destination, or while en route, descend to terrain flight altitude and continue the mission.

c. Conversely, as you fly from a forward location toward the rear of the battlefield, you can progressively increase the flight altitude. A unit's forward or rear boundaries cannot be used as a reliable indication of the altitude to be flown to avoid the enemy air defense threat because these boundaries are highly mobile; are not always the same distance from the FEBA; or subject to the same terrain formations. The unit boundaries depicted on figure 22-1 are presented only to show how the threat will increase as the aviator flies nearer the FEBA and is forced to select lower flight altitudes. Each mission requiring the use of tactical instrument flight must be individually planned and an appropriate altitude profile planned to remain clear of both the Threat and terrain obstacles.

22-9. Flight Routes

Flight routes will be determined by availability of navigational aids.

The Threat, terrain, weather, and availability of radio beacons all affect route selection. Considerations for each factor essential in establishing tactical instrument flight routes include:

a. Straight-line flight between takeoff point and destination will be precluded in many instances by both the terrain and the enemy air defense threat. In selecting the flight route, you must carefully analyze the Threat as it affects potential flight routes. In most instances, the Threat will be the overriding factor in selecting flight routes. You must make a thorough map reconnaissance of the possible route to the destination and return to determine the best route which will provide Threat avoidance and terrain obstacle clearance. In tactical instrument flight, terrain obstacles can serve as valuable assets to deny enemy electronic detection just as they are used for concealment and masking during visual terrain flying in forward areas of the battlefield.

b. The availability and location of navigational aids are significant factors in route selection. Regardless of what the weather condition may be, you should know the location and availability of the NAVAIDs within your area of operation. NAVAIDs in the rear area will be more widely spaced because the radio signal range can be received at a greater range due to the higher altitude the aircraft is flown in this area. NAVAIDs must be placed closer together in the forward areas due to the limited range the radio signal can be received at low altitudes. Route selection in the forward area will be restricted because of the reduced range of the beacons and limited number of beacons. To increase the unit's capability to conduct tactical instrument flight, NAVAIDs must be mobile and highly responsive. Routinely, they must be capable of rapid
displacement on short notice. Air traffic management personnel can expect to move their equipment as frequently as every 4 hours to avoid enemy electronic detection and to prevent repeated use of the same airspace.

c. The enemy will employ highly sophisticated electronic warfare systems. Defeating this capability and protecting aviation assets will require maximum tactical ingenuity and resourcefulness. One of the most effective tactics will be to keep radio communications to the minimum. In selecting a route, communications security and a capability for maintaining communications should be prime considerations. Using terrain to mask the aircraft from possible acquisition by the enemy early warning radar may also mask the aircraft from NAVAIDs and from communications with friendly units. Routes should be selected which provide reliable communications whenever feasible considering also the Threat and the terrain.

(1) **Approaches.** Tactical instrument flight approaches will vary according to the area where the approach is to be performed. In rear areas where standard instrument flight procedures may be followed, ground-controlled approach (GCA) radar can be used for instrument approaches. Approaches in forward battle areas will be limited to using nondirectional beacons. The altitude to which descent can be made will depend on factors such as crew proficiency, aircraft instrumentation, approach NAVAIDs, terrain, and visibility. The ultimate goal of an approach is to allow the aircraft to descend through restrictive weather conditions to an altitude where conditions exist that will permit mission accomplishment. Tactical instrument flight approaches may be classified according to facilities as follows:

(a) **Class I**—Approach using ground-controlled approach of the national microwave landing system with its distance-measuring equipment. Guidance to the ground is reliable with no minimum required for properly trained aviators in appropriately instrumented aircraft and air traffic management (ATM) personnel trained in installation and operation of the equipment.

(b) **Class II**—Approach using one of the following: An instrument landing system, an area surveillance radar, or a nondirectional beacon. Centerline guidance is reliable with a positive position indication (fix) prior to start of letdown. Descent to 50 feet above ground level (AGL) is allowed for properly trained aircrew training manual personnel and aviators using appropriately instrumented helicopters. Visibility must be such that aviators can proceed visually following the approach.

(c) **Class III**—Approach using frequency-modulated (FM) homer. Reliability of directional guidance and station-passage indication close to station is questionable. Descent altitude is dependent on terrain, and visibility conditions must be such that aviators can operate visually before touching down or continuing the mission. Aviators and ATM personnel must be highly proficient.

(2) **Navigational aids.** Because of the Threat in forward areas of the battlefield, it will not be possible to operate NAVAIDs full time. Operating non-directional beacons and surveillance radar NAVAIDs full time risks enemy acquisition of both the NAVAID and the aircraft as targets, or of having the enemy disrupt the mission by jamming the NAVAID signal. In rear areas where more sophisticated NAVAIDs can be used along with standard instrument flight rules, efforts should also be made to limit the signal transmission time to only those times when needed as an aid. In the forward battle areas, radio beacons should be operated in the low power mode and turned on intermittently or only upon request. This procedure lessens the chance of enemy detection.

(a) The portable radio beacon set, AN/TRN-30(EX-1)V, is currently used by field units. It transmits a radio signal that can be used in conjunction with the automatic direction finder (ADF) sets AN/ARN-59 and AN/ARN-83 installed in most Army helicopters. The radio beacon set provides an amplitude-modulated (AM) radio frequency signal on any one of 964 channels in the frequency range from 200 kilohertz (kHz) to 535.5 kHz and 1605 kHz to 1750.5 kHz in tunable increments of 500 hertz (Hz). The beacon can be operated in either of three modes—pathfinder, tactical, or semi-fixed. The range of the beacon depends upon the wattage and configuration of its
operation. The capabilities of the radio beacon for each mode of operation are shown below.

<table>
<thead>
<tr>
<th>Pathfinder (VI)</th>
<th>Tactical Mode (V2)</th>
<th>Semi-Fixed Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>200-535.5 kHz</td>
<td>200-535 kHz</td>
</tr>
<tr>
<td>Range</td>
<td>15 km</td>
<td>15 km</td>
</tr>
<tr>
<td>Below 500 ft</td>
<td>w/15 ft Mast</td>
<td>w/15 ft Mast</td>
</tr>
<tr>
<td>AHO Antenna</td>
<td>25 km</td>
<td>25 km</td>
</tr>
<tr>
<td>Above 500 ft</td>
<td>w/Whip Antenna</td>
<td>w/Whip Antenna</td>
</tr>
<tr>
<td>Power Output</td>
<td>25 W</td>
<td>60 W</td>
</tr>
<tr>
<td>Weight</td>
<td>39 lbs</td>
<td>175 lbs</td>
</tr>
<tr>
<td>Channels</td>
<td>962</td>
<td>672</td>
</tr>
<tr>
<td>Power Source</td>
<td>6V Battery (26V)</td>
<td>Jeep Battery (26V)</td>
</tr>
</tbody>
</table>

(b) FM homing can be used for short distances as an emergency tactical instrument navigational aid when the onboard ADF equipment malfunctions or the ground-based nondirectional beacon becomes unreliable or inoperative. FM homing should be used only as backup NAVAID to return the aircraft to VMC conditions or to a rear area.

(c) Tactical instrument flight at night is conducted primarily in the same manner as it is conducted in the day. However, during transition from tactical instrument flight to visual flight at the point of letdown, a light source must be present to provide a visual reference point landing. The lighted "T", "Y", or reference symbol may be used. If the landing site is located at a location other than the letdown point, a second light source to assist in landing is also necessary.

Section III. TACTICAL INSTRUMENT FLIGHT PLANNING

22–10. Introduction

The situation requiring an aviation support mission to be flown using tactical instrument procedures will be the most demanding you can imagine. To perform this mission while minimizing the exposure of the aircraft to threat weapons and avoidance of terrain features and obstacles, you must plan the mission in great detail and your flight maneuvers must be very precise. This section discusses the planning considerations and explains the procedures for determining the minimum enroute altitude (MEA); the takeoff and climb requirements; the tactical instrument approach; the holding pattern; missed approach procedures; and emergency procedures for tactical instrument flight.

22–11. Preflight Planning

Prior to actual weather conditions requiring tactical instrument flight, you should have completed a portion of the preflight planning procedure. You may not know where the mission is to be flown; however, tactical instrument preplanned routes within the division forward area can be established based on the known location of the radio beacons. When the actual mission is received an additional leg(s) can be added to the preplanned route. By developing preplanned routes, the time required to complete the preflight planning is reduced and less time is required to respond to a mission request.

a. Because the electronic emission of the radio beacons can be easily located by the enemy, they will operate at specified times or as needed and will be frequently relocated. Each time they are moved, you should construct new tactical instrument preplanned routes.

b. There is no existing document that provides information as to the location, frequency, or date-time group for relocation of the radio beacon. It is proposed that this information be contained in the "Communications-Electronic Operation Instructions" (CEOI).
c. Although it is the responsibility of the aviator to compute the information required for tactical instrument flight, flight operations personnel should routinely develop tactical instrument preplanned maps. These maps should be available to the aviator upon receipt of an aviation support mission.

d. When planning for a mission requiring tactical instrument flight, you should follow a checklist to insure completeness. The following factors are essential preflight planning considerations:

(1) Mission requirements. When the mission to conduct a tactical instrument flight is received, you can finalize the premission planning that has already been performed. The following factors should be identified in the mission request:

(a) What. The nature of the aviation support mission; e.g., medical evacuation, resupply, must be identified. Also, the number or weight of material to be transported must be known.

(b) Where. The location of the pickup and drop-off point must be identified. This information is required to determine the enroute course to the drop-off point and to compute the enroute time and fuel requirement.

(c) When. Once it is known when the mission is to be performed, you can use the backward planning sequence to determine the takeoff time and when navigational aids should be turned on.

(d) Who. The unit being supported must be known. Coordination is required to insure the success of the mission.

(2) Enemy situation. You should know the location of friendly and enemy forces and their posture. To gain this information, study the unit's tactical map or contact the supported unit for detailed information concerning the tactical situation.

(3) Air defense weapons. It is important that the unit operations personnel obtain all available information which identifies the location of enemy air defense weapons. These locations should be plotted on the tactical situation map for review by the aircrews. Intelligence information on the enemy's tactical air capability must also be made available. Based on the Threat and route of flight, consideration should be given to requesting suppression of threat weapons.

(4) Weather. An indepth weather briefing is desirable in determining mission feasibility. Enroute weather and destination weather at all intended points of landing should be acquired. Pilot reports (PIREP) are helpful when available. The US Air Force weather service provides a valuable source of weather information, especially in forecasting area trends and changes. Whenever possible, contact should be attempted with destination units to further enhance the accuracy of overall weather factors for the proposed mission.

(5) Communications. The frequencies and call signs of the supported unit, air traffic control (ATC) facility and artillery units must be known. A current CEOI should be available and you must be knowledgeable concerning its use.

(6) Navigational aids (NAVAID). You must know the location of the radio beacon, its frequency and when and where it will be relocated. Other information includes the frequency-modulated (FM) radio frequency of the pathfinder operating the beacon and any known dead spots created by terrain features.

(7) Special equipment. The mission to be performed will dictate what special equipment will be carried aboard the aircraft; e.g., litter, tiedowns, night vision goggles. Survival equipment for the type of environment should be carried aboard the aircraft.

22-12. Determining the Course Line

As information pertaining to the location of NAVAIDS and the supported units becomes available, you should plot it on your tactical map. An analysis of this information will allow you to select a
route to your destination that will minimize the vulnerability of the aircraft to threat weapons and obstructions. Ideally, you would select a route that would mask the aircraft from threat weapons; however, the terrain features that mask the aircraft may require the minimum enroute altitude be so high that the aircraft can be detected by electronic devices. To insure that all factors are considered when selecting the tactical airway, the following guidelines are provided:

- **Correction for wind drift must be computed to insure accurate navigation.**

 a. A factor in route following is the availability of radio beacons and where they are positioned. In some situations, there may be only one beacon available. Because the reliable reception distance of the beacon signal is approximately 15 kilometers (km), it may be necessary to use dead-reckoning navigation during some portion of the route (fig 22-2). Even when two or more radio beacons are available, they may be so far apart that a segment of the route must be conducted using dead-reckoning (fig 22-2). To avoid the danger of exceeding the limits of the safety zone, the dead-reckoning segment of the route should not exceed 15 km. Using this criteria, it would be possible to navigate 60 km using one radio beacon before receiving the signal from a second beacon along the course line (No. 1, fig 22-2). If the beacon is located at the beginning or end of the enroute course, the maximum safe distance you could navigate using dead-reckoning and radio navigation would be 30 km (No. 2, fig 22-2). Before final selection of the tactical airway is made, you must study the terrain within the enroute safety zone to determine the minimum enroute altitude. After determining the minimum enroute altitude for each leg of the route, you may find the MEA subjects the aircraft to detection by threat weapons. To avoid this danger, you should select another route that would permit the aircraft to be flown at a lower MEA. After it has been determined that the selected route provides the best protection from threat weapons and terrain obstacles, you should measure the azimuth and distance of each leg. Remember, the grid azimuth of each leg must be converted to magnetic azimuth. Also, when conducting dead-reckoning navigation, correction for wind drift and instrument error must be applied to insure accurate navigation.

 - **Grid azimuth must be converted to magnetic azimuth.**

 b. After determining the magnetic course and distance of each leg, draw on a plain sheet of paper a tactical instrument map depicting the route that has been selected. The exact scale of the map is not

![Figure 22-2. Enroute navigation.](image)
The distance of each leg—measured in kilometers—and magnetic course should be recorded on the map (fig 22-3). If a portion of the leg is conducted using dead-reckoning navigation, mark the point where radio reception can be anticipated. Because the enroute altitude is normally below 1,000 above ground level (AGL), surface winds should be used for computing enroute time and wind correction. This information should be recorded on your instrument flight log (fig 22-4). If the leg is flown using both radio and dead-reckoning navigation, compute the time for each portion of the leg separately. After completing your preflight planning, you can add the minimum enroute altitude for each leg of the route.

22-13. Determining Minimum Enroute Altitude

Due to the low altitude you will be flying when conducting tactical instrument flight, it is essential that you perform a thorough map analysis to determine the highest obstacle within the safety zone bordering the course line. Failure to recognize the highest obstruction could result in the aircraft being flown at an altitude below an obstruction within the enroute safety zone, thus creating an unsafe condition of flight. In addition to the information contained on the map, you should consider any PIREPs of manmade features that have been constructed since the map was printed. Although obstruction clearance is of primary concern, consideration must also be given to avoiding detection by enemy electronic devices. You may find that if the aircraft is flown at the MEA it would be detected by threat weapons. When this condition exists, you should select another route where the MEA is lower. Always remember to fly at the lowest minimum enroute altitude possible. This means that each leg of the route may be flown at a different altitude. The following procedures describe the method for determining the minimum enroute altitude.

a. The MEA for each leg of a tactical instrument airway may be different. To determine the MEA for each leg of the route, you must consider one or more of the following safety zones: The takeoff, the enroute, or the approach. For example, the MEA for the first leg is determined by the highest obstructions within the takeoff safety zone and the enroute safety zone (fig 22-5). If the route has three or more legs, the MEA for the leg(s) other than the takeoff
and landing leg, is determined by the highest obstacle within the enroute safety zone (fig 22-5). The MEA for the final leg is determined by the highest obstacle within the enroute safety zone and the approach safety zone. For the purpose of the discussion within this paragraph, it will be assumed that the highest obstacle within the takeoff and approach safety zone is lower than the enroute safety zone.

b. The method of navigation that is used to maneuver the aircraft along the tactical airway—radio navigation or dead-reckoning navigation—will determine the procedure for computing the width of the safety zone. The following criteria will be used for determining the safety zone for each type of navigation.

(1) Radio navigation—within 15 km of a radio beacon: The width of the safety zone should be 2 kilometers wide at the beacon (1 km each side of the beacon) and gradually broaden to a point equal to one-fifth the distance of the leg at the midpoint. If a fraction of a kilometer results, round up to a whole kilometer (fig 22-6).

Example: The tactical mission requires that you perform an aviation support mission during instrument meteorological conditions (IMC). The route consists of two legs fixed by three radio beacons. Radio navigation is possible for the entire route. To determine the safety zone for each leg, you must first measure the total distance of each leg. The widest part of the safety zone is one-fifth the total distance or 6 km for each leg in the example.

The boundary line is drawn on each side of the course leg from a point 1 km abeam the beacon to a point 3 km from the centerline of the course at the midpoint (fig 22-6).
(2) Dead-reckoning navigation—dead-reckoning should not exceed 15 km. The width of the safety zone shall be one-fifth the length of the course leg. If a fraction of a kilometer results, round up to a whole kilometer (fig 22-7).

Example: The tactical situation requires that you perform an aviation support mission during IMC. The route requires that the initial portion of the flight be flown using dead-reckoning navigation. To determine the safe zone for this portion of the leg, you must first measure the total distance of the leg (30 km). The width of the safety zone is one-fifth the total distance of the leg or 6 km. Draw the boundary line 3 km on each side of the centerline for that portion of the leg flown using dead-reckoning navigation.

(3) Radio and dead-reckoning navigation. When the course leg is flown using both radio navigation and dead-reckoning, the length of the leg should not exceed a total of 30 km. To determine the width of the safety zone for the portion flown using radio navigation, a line is drawn from the boundary of dead-reckoning safety zone to boundary of the radio navigation safety zone at the radio beacon.

Example: The tactical situation requires that you perform an aviation support mission during IMC. The route requires that each leg of the route be formed using both dead-reckoning and radio navigation. To determine the safety zone for the portion of each leg flown using dead-reckoning navigation, follow the procedures described in the dead-reckoning navigation example. To determine the limits of the safety zone for the portion of each leg flown using radio navigation, draw a line from the safety zone boundary limits where dead-reckoning navigation ends or begins to the safety boundary limits at the beacon (fig 22-8).

c. When the enroute course changes more than 45 degrees, the aircraft can be flown outside the enroute safety zone during the turn. To insure obstacle clearance, a turn safety zone should be constructed on the side of the enroute course where the turning radius of the aircraft would extend outside the enroute safety zone. The turning safety zone should be 3 kilometers wide and extend 3 kilometers beyond the radio beacon or fix where the turn will be performed (fig 22-7).
CAUTION: The indicated airspeed for enroute travel should not exceed 90 knots. Airspeeds greater than 90 knots may cause the aircraft to be flown outside the safety zones. Also, difficulty will be experienced when decelerating the aircraft to 60 knots during the approach.

d. After determining the boundary of the safety zone for each leg of the route, you should construct the boundary for the takeoff and landing safety zone. The procedure for determining the takeoff and landing safety zone will be discussed in the following paragraphs. For the purpose of this discussion, the assumption will be made that the highest obstruction is located within the enroute safety zones. Study the area within the safety zone and identify the altitude of the highest terrain or obstruction. Once the highest altitude is located, add 400 feet. This altitude is the recommended MEA for tactical instrument flight.

Note. The recommended safe minimum clearance altitude of 400 feet above the highest obstacle (AHO) incorporates a safety margin for the variables of altimeter error, pilot error, obstacle elevations, and height of vegetation not depicted on tactical maps. At 200 feet AHO, the lowest beacon reliable reception altitude, the safety margin for the variables is not adequate. Altimeter error, variation in obstacle elevation, and heights of vegetation may be greater than 100 feet. Flights at 300 feet AHO would be satisfactory without considering potential pilot error.

To allow for pilot error, an additional 100 feet is added as a safety margin—making the recommended safe minimum clearance altitude 400 feet AHO. Depending on the type of terrain—flat desert, broken woodlands, or mountainous—the safe minimum clearance altitude for flight planning purposes can and should be adjusted commensurate with the Threat and terrain. For example, the safety margin can be reduced over flat desert terrain since vegetation or manmade obstacles are usually absent; in mountainous terrain, the margin may need to be increased to provide for downdrafts and unexpectedly high terrain obstacles.

MEA = HIGHEST OBSTRUCTION IN SAFETY ZONE + 400 FEET

Example (fig 22-9): The tactical situation requires that you perform an aviation support mission during tactical instrument flight conditions. After constructing the safety zones for each leg of the route and the takeoff and landing safety zone, you identify the altitude of the highest obstruction on the first leg to be 450 feet, 320 feet for the second leg, and 500 feet for the third leg. The MEA for the first leg is determined to be 850 feet AGL, 720 feet AGL for the second leg, and 900 feet AGL for the third leg (fig 22-9).

Note. Obstructions shown on the map identify the height of the obstruction above the ground. To determine the altitude of the obstruction, you must add the height of obstruction to the terrain elevation.
22-14. Takeoff Planning

Planning for the takeoff should include all the factors for a normal VMC takeoff; e.g., wind direction and velocity, longest axis of the area, barriers on the takeoff path, and power requirements. In addition, since the takeoff may be in actual weather conditions, you must evaluate the terrain within the takeoff safety zone to insure the climb performance of the aircraft will allow you to climb to an altitude above the obstacle before reaching it. When possible, the takeoff direction should be planned to be on or near the heading of the first leg of the course. Because this cannot always be accomplished, procedures have been established which will allow you to maneuver the aircraft safely to the desired course. If there is a navigational aid at the takeoff point, standard tracking procedures can be used to establish the aircraft on the desired course.

a. When the takeoff heading is within 90 degrees of the enroute course, make a direct turn to the enroute course heading after reaching an altitude 100 feet above the highest obstruction within the takeoff safety zone (fig 22-10).

b. When the takeoff heading is more than 90 degrees from the enroute course heading, a teardrop turn is used to reverse direction and establish the course heading. After reaching an altitude 100 feet AHO within the takeoff safety zone, execute a 210-degree turn (fig 22-10). The turn should be made in the direction of the lowest terrain obstacles. Where terrain obstacles are not a consideration, the turn should be made into the wind. After completing the turn, fly the heading the same length of time as the takeoff heading was flown. After this period of time elapses, turn to the heading which will allow you to make good the desired course.

c. When executing any of the takeoff maneuvers, you should maintain maximum climb performance using an airspeed of 60 knots until 100 feet AHO in the takeoff safety zone. The high rate of climb and slow airspeed is necessary to gain altitude in a short distance.

d. If the takeoff heading is aligned with the enroute course, a takeoff safety zone is not required. The width of the enroute safety zone provides adequate obstruction clearance for the climb zone. In all other cases, you must construct both a takeoff safety zone and a climb zone to insure obstacle clearance.
(1) To develop a takeoff safety zone, construct a box 4 x 3 kilometers with the line dividing the maneuvering and nonmaneuvering sides of the safety zone aligned on the takeoff heading (fig 22-11, 22-13). The origin of this line is at the takeoff point. The 3 x 3 kilometer box of the takeoff safety zone will always be located on the turning side. Draw a climb safety zone within the takeoff safety zone.
(2) The climb safety zone should be drawn 30 degrees each side of the takeoff heading and should extend from the takeoff point until intercepting the boundary of the takeoff zone. Identify the height of the highest manmade or natural obstacles within the climb zone and the distance from the takeoff point. Using the takeoff obstruction chart (fig 22-12), you can determine the rate of climb required to clear any obstacle within the climb safety zone.

Example: It is determined that there are two obstacles within the climb zone. By plotting these two obstacles on the takeoff obstruction chart, it can be determined that a climb rate of 500 feet per minute is required to clear the obstacle by a safe margin.

e. Determine the highest terrain feature or obstacle within the takeoff safety zone. This altitude plus 100 feet is the altitude you must climb to before turning to intercept the enroute course.

(1) Locate the altitude of the highest terrain feature or obstacle within the takeoff safety zone and the safety zone for the first enroute leg. Add 400 feet to the highest obstruction within these two safety zones. This is the minimum enroute altitude for the first leg of the route, and the aircraft must be flown to this altitude while turning to intercept the enroute heading.

(2) The MEA for succeeding legs of the route may be different. To minimize detection of the aircraft, you should fly at the lowest altitude rather than select the highest MEA; and fly the entire route at one altitude. If the succeeding leg of the course is higher, plan your climb so as to cross the radio beacon at the highest MEA. If the altitude is lower, descend to the MEA after passing the radio beacon.
Figure 22-13. Takeoff safety zone.
22-15. Approach Procedures

The tactical instrument approach incorporates the normal flight procedures used for the standard instrument approach; however, the minimum descent altitude for the tactical approach is lower. There are two types of tactical approaches—*the terminal approach* and the *straight-in approach*. The flight maneuvers and procedures for constructing the approach safety zone for the tactical approach are:

a. Terminal Approach. The radio beacon used for the terminal approach is located at the landing point. There is no final fix where the descent is initiated. The standard 1-minute racetrack pattern is used to maneuver the aircraft into position for the descent (fig 22-14). Because there is limited space within the approach safety zone, the aircraft should be flown at 60 K airspeed. Reduction in airspeed should be made upon arrival at the beacon. Also, the aircraft must be flown to the minimum maneuver altitude within the approach safety zone (400 feet above the highest obstruction within the approach safety zone) prior to initiating the approach. If the MEA is higher than the minimum maneuver altitude, descend to the lower altitude in the pattern. Upon intercepting the approach heading, begin descent so as to arrive at the minimum descent altitude (MDA) prior to reaching the beacon. Maintain track and MDA until station passage.

The approach safety zone for the terminal approach provides a safe maneuvering area for entering the racetrack pattern, holding and missed approach. The procedures for constructing the approach safety zone are:

1. The lateral boundaries of the approach safety zone are 3 kilometers on the maneuvering side...
and 1 kilometer on the nonmaneuvering side (fig 22-15). The linear boundaries extend 3 kilometers on each side of the beacon. The maneuvering side should be located on the side where the terrain is the lowest. Where terrain is not a factor, it should be positioned on the upwind side.

(2) Study the area within the approach safety zone and locate the highest obstruction. The MDA is derived by adding 200 feet to the altitude of the highest obstruction. As discussed previously, the MEA for the final leg of the course may be determined by the highest obstruction within the approach safety zone.

(3) A diagram of the approach should be drawn to provide a visualization of the maneuvers to be performed during the execution of the approach.

Example (fig 22-16):
Altitude of highest obstruction within the approach safety zone 400 feet (MSL)
Minimum enroute altitude 1,000 feet (MSL)
Minimum maneuver altitude within approach safety zone 800 feet (MSL)
Minimum descent altitude 600 feet (MSL)

Sequence I—Decrease airspeed to 60 K upon crossing the radio beacon. After passing the beacon, turn to parallel the outbound heading and begin descent to the minimum maneuver altitude within the approach safety zone.

Figure 22-16. Terminal approach procedures.
Sequence II—After 1-minute outbound, turn to the inbound heading. If the descent to the minimum maneuver altitude for the approach safety zone (800) is completed prior to intercepting the final approach course, continue the approach inbound to the landing point. If additional time is required for the descent, fly the pattern until reaching the minimum maneuver altitude. Upon intercepting the final course inbound, begin descent to MDA.

Sequence III—If at any time on the approach visual contact is made with the ground, transition to VMC flight. If visual contact is not possible, execute missed approach procedures upon station passage. Missed approach procedures are discussed in the paragraph entitled “Missed Approach Procedures.”

b. Straight-In Approach. To perform a straight-in approach, you must be able to identify a point along the enroute course where the approach begins. This point may be identified by an intersection formed by the two magnetic bearings or by passing over an enroute nondirectional beacon (fig 22-17). Normally, there is sufficient distance between the final fix and the landing point to permit a standard rate of descent from the enroute altitude to MDA prior to reaching the landing point; however, when necessary, you may enter holding on the inbound course to the fix and descend to the minimum maneuver altitude within the approach safety zone. A reduction in airspeed to 60 K should be made upon arrival at the fix. Upon passing the fix, descend to MDA and track on the inbound course.

(1) When using a radio beacon or the intersection of magnetic bearings as the final fix, the following factors must be considered:

(a) Determine the location along the course where reliable intersection identification can be established. Terrain obstructions will limit the range and altitude at which a reliable signal can be received.

(b) The secondary radio beacon should be no more than 10 km from the intersection. This restriction is necessary to insure accurate intersection identification.

Figure 22-17. Straight-in approach.
(c) Locate the intersection so the magnetic bearings forming the intersection are as close to 90 degrees as possible.

(d) The landing point should be no less than 2 km and no more than 8 km from the final fix.

(2) The approach safety zone for the straight-in approach provides a safe maneuvering area for holding, the approach, and missed approach. The lateral boundaries are 3 kilometers on the maneuvering side and 1 kilometer on the nonmaneuvering side (fig 22-18). The linear boundaries will vary depending on the distance the intersection is from the landing point. Regardless of what this distance may be, the safety zone will extend 3 km in front of the intersection to a point 3 km beyond the landing point. The guidelines for the construction of the approach safety zone are applicable both when the approach leg is aligned with the enroute course and when offset from the enroute course.

(3) Study the area within the approach safety zone and locate the highest obstruction. Add 200 feet to the highest obstacle within the safety zone to determine the MDA. Also determine the minimum maneuver altitude within the approach safety zone by adding 400 to the highest obstruction. As previously discussed, this altitude may determine the MEA for the final leg of the route. If the minimum maneuver altitude for the approach safety zone is lower than the MEA, you can descend to this altitude while in the holding pattern.

(4) Measure the distance from the final approach fix to the landing point and compute the time required to travel this distance at 60 K airspeed. It may be necessary to enter holding if a high rate of descent is required to descend to MEA from a straight-in approach. Missed approach procedures will be executed when the time inbound from the fix elapses.

<table>
<thead>
<tr>
<th>Airspeed</th>
<th>Distance</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>3 km</td>
<td>2:08</td>
</tr>
</tbody>
</table>

(5) A diagram of the approach should be drawn to provide a visualization of the maneuvers to be performed during the execution of the approach.

Figure 22-18. Approach safety zone (straight-in approach).
Example (fig 22-19):
Minimum enroute altitude 1,000
Minimum maneuver altitude within
the approach safety zone 800
Minimum descent altitude 600
Time to landing point 2:08

Sequence I—Decrease airspeed to 60 K upon
crossing the final fix. After passing the fix,
begin the descent and aline the aircraft on
the inbound course. In this example, entry
into the holding pattern is not necessary
because the minimum rate of descent
required to arrive at the MDA before
reaching the landing point can be achieved.

Sequence II—Continue to track inbound and
descend to MEA. If at any time on the
approach visual contact is made with the
ground, transition to VMC flight. If visual
contact is not possible, execute missed
approach when the inbound time has
elapsed.

22-16. Holding Procedures

a. Upon arrival at your destination, you may have
to enter holding due to the tactical situation, or to let
down to a lower altitude before executing the
approach. The time flown in the holding pattern
must be minimized to avoid detection and engage-
ment by threat weapons. Entry into holding is
simplified because you will always hold on the
enroute course. The decision whether to make left or
right turns is optional; however, the direction of turn
should be determined while on the ground during
your preflight planning. Ideally, the holding pattern
will be flown over the lowest terrain obstruction and on the upwind side of the course line.

b: The holding pattern is limited to the standard 1-minute inbound leg. Airspeed while in the holding pattern is 60 K. The approach safety zone includes a safe area for holding and is planned for in every approach. Holding should be conducted at the minimum maneuver altitude within the safety zone—400 feet AGL.

Example (fig 22-20):
Minimum enroute altitude (MEA) 1,000 MSL
Minimum maneuver altitude within the approach safety zone 800 MSL
Minimum descent altitude 600 MSL

Sequence I—Decrease airspeed to 60 K upon crossing the fix. After passing the fix, turn to the outbound heading. Direction of turn should be toward the maneuvering side as determined in your preflight planning. Begin descent to minimum maneuver altitude (800 feet) after passing the fix.

Sequence II—Note time abeam the fix and fly outbound sufficient time to achieve a 1-minute inbound leg. Apply wind correction, as necessary, both outbound and inbound. Continue flight with holding pattern as required.

Figure 22-20. Holding pattern.
22-17. Missed Approach Procedures

a. Weather conditions or the enemy situation may not allow you to land at your destination after initiating the approach. When either of these conditions exists, you must execute a missed approach. The requirement to perform a missed approach must be anticipated for every tactical instrument flight. To insure obstruction clearance for the missed approach, a safe maneuver area is provided for in the approach safety zone. The maneuver for the missed approach is basically the same for both the terminal approach and the straight-in approach. It consists of a climbing left turn or right turn to intercept the enroute course or return to the radio beacon. If the missed approach procedure is to intercept the enroute course, use a 45-degree or more intercept heading.

b. During the preflight planning, you must determine the direction of turn. Normally, it is on the same side the holding pattern is flown; however, you are not restricted to this procedure. The location of highest terrain obstructions and wind direction will dictate the direction of turn.

c. A diagram of the planned missed approach should be drawn to provide a visualization of the maneuver to be performed during the execution of the missed approach.

Figure 22-21. Missed approach procedure.
Example (fig 22-21):
Minimum descent altitude 600 MSL
Minimum maneuvering altitude 800 MSL
Minimum enroute altitude 1,000 MSL

Sequence I—Upon reaching the position where the missed approach must be executed, immediately initiate a climbing turn. Continue the turn until on a direct course to the radio beacon or on an intercept heading to the enroute course. The climb should be expedited to the minimum enroute altitude. An airspeed of 60 K should be maintained during the climb.

Sequence II—Radio contact should be established with the Flight Coordination Center (FCC) to advise of your intentions. If contact cannot be made, contact the ground unit to relay your request to the air traffic control (ATC) personnel.

22-18. Emergency Procedures

The emergencies that you may experience while conducting tactical instrument flight will vary. The best procedures to cope with the emergency will be determined by the conditions that exist at the time of the emergency. Good judgment and positive action are essential to insure survival of the aircraft and aircrew. Although not complete, the following are emergency conditions that might be experienced. Also presented are recommended actions.

a. Air Defense Emergency Procedures. Even though the enemy cannot visually acquire and engage your aircraft when conducting instrument flight in the clouds, electronic devices have this capability. The route you fly should minimize vulnerability to enemy threat weapons; however, while en route your AN/APR-39 radar detector may activate, indicating the aircraft is being tracked by enemy radar. Unless immediate action is taken to reduce altitude you will soon be engaged. To descend below the minimum enroute altitude is dangerous; however, you must break electronic line-of-sight by descending. To minimize the danger involved, you should decelerate the aircraft to the minimum controllable forward airspeed. Simultaneously, initiate a descent. At a specific altitude, you will lose radar line-of-sight. Descent below this altitude is not required unless you have flown into VFR conditions. If you are still in the clouds, you must decide whether to continue to your destination or reverse course. Primary factors that you must consider are:

1. What are the weather conditions?
2. What is your altitude above the highest obstruction?
3. In which direction are the lowest obstructions located?
4. Is the landing point or takeoff point closer?
5. Are there suppressive countermeasures available to degrade the enemy threat weapons?
6. Is there any battle damage to the aircraft? If so, what effect does it have on continued flight?

b. Loss of Radio Navigational Aids. While en route to the landing point, you may experience a loss of signal from the radio beacon. Each situation of this nature requires good judgment. General guidance that may be followed is:

1. If the radio beacon fails when your position is within 15 kilometers of the beacon, reduce airspeed to 60 knots and continue on the route for 2 minutes. If the signal is not received within this period of time, reverse course and use dead-reckoning navigation, as required, to return to the takeoff point.
2. If the radio beacon fails when you are beyond the effective range of the radio beacon, you will not know immediately that it has failed. If no audio signal is received upon reaching the time where the radio signal should be received, execute a course reversal.
3. If the radio beacon fails during the approach, continue the approach to the MDA, but do not continue inbound after reaching the MDA unless visual contact is made with the ground.
4. If the radio beacon fails while holding, do not initiate the approach; instead, turn to the enroute heading and return to the takeoff point.
(5) If in close proximity to the landing point and ground personnel can identify your position by sound, use ground personnel to talk you down.

(6) If radio contact can be established with the pathfinder at the beacon, FM homing can be used as an emergency means of navigation.

c. Aircraft Deficiency. Any number of aircraft emergencies may occur during a tactical instrument flight. These emergencies can be categorized as land immediately, land as soon as possible, land within a specified time. The first two emergencies are simple go or no-go indications of flight. The third condition must be evaluated to determine if you should continue or abort the mission. Factors that must be evaluated to determine what emergency action should be taken are:

(1) Have you reached the point of no return where it would be closer to continue on to the intended point of landing?

(2) Can a safe landing be made at the landing point based on the emergency, the nature of the landing area, the load and the enemy situation?

(3) If the emergency requires you to perform a full stop landing from the approach, even if visual conditions cannot be established, slow the aircraft to minimum controllable airspeed and descend at a slow rate. If visual contact is not established at MEA, continue the descent until visual contact with the ground.

(4) Can a takeoff be made after landing? Due to the nature of the emergency, a safe takeoff may not be possible; however, flight to the takeoff point can be accomplished.

(5) How critical is the mission? It may be more important to get the cargo to its destination and let the aircraft remain on the ground.
Section IV. TRAINING

22-19. Introduction

a. Units qualifying aviators in tactical instrument flight are responsible for conducting a well-organized training program. The program of instruction must instill confidence within the student that tactical instrument flight can be performed safely in a high threat environment and at low altitudes. The student undergoing this training should be qualified and proficient in instrument flight. Before conducting the flight portion of the training, the student should demonstrate a knowledge of the preflight training that is required for instrument flight. Teamwork between the pilot and copilot is essential. Whereas 50 feet to 100 feet above or below assigned altitude is not critical for normal instrument flight, it is very serious when conducting tactical instrument flight. The copilot should advise the pilot when the aircraft deviates from an assigned altitude or is being flown off-course. Maintaining precise positioning of the aircraft is essential for tactical instrument flight.

b. To acquire the proficiency that is required to conduct tactical instrument flight, the training must be continuous. Command emphasis is essential to insure that the aviators assigned to the unit achieve and maintain the required proficiency to conduct tactical instrument flight in an actual combat environment. Where possible, the synthetic flight training simulators (SFTS), in conjunction with actual inflight training, should be used to obtain and maintain the required degree of proficiency.

c. Tactical instrument training flights conducted during VMC require no unusual precautions; however, when conducted during actual instrument conditions the commander must insure that:

(1) Actual tactical instrument training flights are conducted in a controlled training environment and only on predetermined routes with all obstacles clearly noted. These routes must be coordinated with local and government air traffic authorities (e.g., the coordination for major training exercises, or local coordination to establish semi-permanent training routes). Authorities must then determine the necessity of publishing the proposed air routes and/or the notification of civil airspace users as necessary.

(2) Actual tactical instrument training flights are conducted only when destination weather is expected to be at, or greater than, minimum descent altitude at time of arrival ±1 hour.

(3) Missed approach procedures are coordinated with local airspace authorities to allow immediate transition to necessary alternate airfields. Alternate airfields should be selected in accordance with criteria established for normal IFR flight in AR 95-1.

22-20. Flight Training for Tactical Instrument Flight

A recommended program of instruction for qualifying aviators for tactical instrument flight is provided.
FLIGHT TRAINING FOR TACTICAL INSTRUMENT FLIGHT

<table>
<thead>
<tr>
<th>TASK</th>
<th>CONDITION</th>
<th>TYPE INSTRUCTION</th>
<th>REFERENCES</th>
<th>TRAINING/EVALUATION STANDARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify the prerequisite for conducting tactical instrument flight.</td>
<td>Classroom</td>
<td>Conference</td>
<td>AR 95-1, FM 1-5, FM 1-5, C2, FM 1-60, TERPs</td>
<td>The student must demonstrate a knowledge of instrument flight procedures, regulations, and flight techniques.</td>
</tr>
<tr>
<td>Identify the Threat and how it affects tactical instrument flight.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2, FM 1-60, FM 90-1, TC 1-88</td>
<td>The student must demonstrate a knowledge of threat weapons and their capabilities. The student must also know the planning requirements that will avoid or minimize detection of the aircraft by threat weapons systems.</td>
</tr>
<tr>
<td>Identify the condition during which tactical instrument flight will be conducted.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate a knowledge of the meteorological conditions that require the use of tactical instrument flight.</td>
</tr>
<tr>
<td>Identify the principles of employment for instrument flight in the combat zone.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2, FM 1-60, FM 90-1</td>
<td>The student must demonstrate a knowledge of the different flight altitudes that will be flown within the different areas of the combat zone, the NAVAID's available, classes of approaches, and the control procedures to be followed.</td>
</tr>
<tr>
<td>Identify the factors that must be considered when planning a tactical instrument flight.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, FM 1-5, C2</td>
<td>The student must demonstrate a knowledge of the factors that are required for initial planning of a tactical instrument flight. This includes the mission requirements; e.g., what, where, when, and who, the enemy situation, the location of air defense weapons, the weather condition, communications, navigational aids, and special equipment.</td>
</tr>
<tr>
<td>TASK</td>
<td>CONDITION</td>
<td>TYPE INSTRUCTION</td>
<td>REFERENCES</td>
<td>TRAINING/EVALUATION STANDARDS</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----------------</td>
<td>------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Describe the two types of navigation used for tactical navigation.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5</td>
<td>The student must demonstrate a knowledge of the capabilities and limitations for both dead-reckoning and radio navigation as relates to tactical instrument flight planning.</td>
</tr>
<tr>
<td>Describe the procedure for determining the enroute course.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate a knowledge of the capabilities of the radio beacon, conversion of grid azimuth to magnetic azimuth, and measurement of distances in kilometers.</td>
</tr>
<tr>
<td>Describe the procedures for construction of the enroute safety zone.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, FM 1-5, C2</td>
<td>The student must demonstrate a knowledge of how to construct an enroute safety zone for dead-reckoning navigation, radio navigation, or a combination of dead-reckoning and radio navigation.</td>
</tr>
<tr>
<td>Describe the procedures for determining the minimum enroute altitude (MEA).</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate a knowledge of how to analyze the area within the enroute safety zone to determine the highest obstruction. After identifying the highest obstacle, the student must determine the minimum enroute altitude for each leg of the route.</td>
</tr>
<tr>
<td>Describe the procedure for intercepting the enroute course after takeoff.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate a knowledge of how to intercept the enroute course when the takeoff heading is less than or greater than 90 degrees from the enroute course.</td>
</tr>
</tbody>
</table>
FLIGHT TRAINING FOR TACTICAL INSTRUMENT FLIGHT

<table>
<thead>
<tr>
<th>TASK</th>
<th>CONDITION</th>
<th>TYPE INSTRUCTION</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe the procedure for determining the takeoff climb zone.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2</td>
</tr>
<tr>
<td>Describe the procedures for determining the takeoff safety zone.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2</td>
</tr>
<tr>
<td>Describe the procedures for determining required rate of climb on takeoff.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2</td>
</tr>
<tr>
<td>Describe the procedures for performing a terminal approach.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2</td>
</tr>
<tr>
<td>Describe the procedures for performing a straight-in approach.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2</td>
</tr>
</tbody>
</table>

TRAINING/EVALUATION STANDARDS

- **The student must demonstrate a knowledge of how to construct the takeoff climb zone, analyze the area within the zone for the highest obstruction, and determine when the turn to intercept the enroute course can be made.**

- **The student must demonstrate a knowledge of the dimensions and orientation of the takeoff safety zone, how to analyze the area within the takeoff safety zone to determine the highest obstruction, and how to determine the MEA for the first leg of the route.**

- **The student must demonstrate a knowledge of how to construct a takeoff obstruction chart and how to determine the required climb rate to clear obstacles within the takeoff climb zone.**

- **The student must demonstrate a knowledge of entry into the approach pattern, descent to the minimum maneuver altitude, the descent to minimum descent altitude (MDA), and when to execute missed approach.**

- **The student must demonstrate a knowledge of how to fix the final fix inbound; descend in the pattern, when necessary; descend to MDA; and when to execute a missed approach.**
Flight Training for Tactical Instrument Flight

<table>
<thead>
<tr>
<th>TASK</th>
<th>CONDITION</th>
<th>TYPE INSTRUCTION</th>
<th>REFERENCES</th>
<th>TRAINING/EVALUATION STANDARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe the procedures for determining the approach safety zone.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate a knowledge of the dimensions and the orientation of the approach safety zone, how to analyze the areas within the approach safety zone to determine the highest obstruction, and how to determine the MEA for the final leg of the route.</td>
</tr>
<tr>
<td>Describe the procedures for determining the minimum descent altitude for the approach.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate a knowledge of how to determine the highest obstruction within the approach safety zone. Using this information, determine the minimum descent altitude.</td>
</tr>
<tr>
<td>Describe the holding procedure.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate a knowledge of how to enter the holding pattern, the time of the inbound leg, direction of turn; how to determine the minimum maneuver altitude for holding, and size of the maneuver area.</td>
</tr>
<tr>
<td>Describe the missed approach procedure.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate a knowledge of when to execute the missed approach, the direction of turn, method of course interception, climb requirements, and size of the maneuver area.</td>
</tr>
<tr>
<td>Identify the categories of emergency procedures and describe the recommended actions.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate a knowledge of emergency conditions that may result from acquisition of the aircraft by threat weapons, loss of radio navigational aids, or aircraft deficiencies.</td>
</tr>
<tr>
<td>Perform tactical instrument takeoff.</td>
<td>Practical Exercise</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate the proper procedure for instrument takeoff, required rate of climb, course interception, and climb to minimum enroute altitude.</td>
<td></td>
</tr>
</tbody>
</table>

A tactical instrument takeoff will be performed. Takeoff heading will be less than or greater than 30 degrees from the enroute course.
FLIGHT TRAINING FOR TACTICAL INSTRUMENT FLIGHT

<table>
<thead>
<tr>
<th>TASK</th>
<th>CONDITION</th>
<th>TYPE INSTRUCTION</th>
<th>REFERENCES</th>
<th>TRAINING/EVALUATION STANDARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform enroute tactical instrument navigation.</td>
<td>Aircraft or SFTS will be flown over tactical instrument route at minimum enroute altitude.</td>
<td>Practical Exercise</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate the proper procedures for dead-reckoning and radio navigation, maintain required altitude, identify intersection or beacon passage, and attain accurate estimates of enroute time (± 1 minute).</td>
</tr>
<tr>
<td>Perform tactical instrument approach (terminal).</td>
<td>A tactical instrument approach will be performed.</td>
<td>Practical Exercise</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate the proper procedure for entry into the approach pattern, descent to minimum maneuver altitude within the approach safety zone, descent to minimum descent altitude, tracking, transition to VFR flight, and execution of missed approach.</td>
</tr>
<tr>
<td>Perform tactical instrument approach (straight-in).</td>
<td>A tactical instrument approach will be performed.</td>
<td>Practical Exercise</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate the proper procedure for identifying the final fix, descent to minimum descent altitude, tracking, transition to VFR flight, execution of missed approach, and when necessary, entry into holding to descend to the minimum maneuver altitude prior to initiating approach.</td>
</tr>
<tr>
<td>Perform holding at the radio beacon or intersection.</td>
<td>Tactical holding will be performed.</td>
<td>Practical Exercise</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate the proper procedure for entry into the holding pattern, wind correction, and descent to minimum maneuver altitude.</td>
</tr>
<tr>
<td>Perform missed approach procedure.</td>
<td>Missed approach procedure will be performed following tactical approach.</td>
<td>Practical Exercise</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate the proper procedure for entry into the missed approach, direction of turn, climb to MEA, and interception of the enroute course.</td>
</tr>
<tr>
<td>Perform simulated emergency procedure.</td>
<td>Simulated emergency conditions will be performed.</td>
<td>Practical Exercise</td>
<td>FM 1-5, C2</td>
<td>The student must demonstrate a knowledge of the proper emergency procedures to be performed when confronted with an air defense emergency, loss of radio navigation aids, or aircraft deficiency.</td>
</tr>
</tbody>
</table>
APPENDIX A

REFERENCES

Department of the Army Pamphlets of the 310-series should be consulted frequently for latest changes or revisions of the references given in this appendix and for new publications relating to the material covered in this publication.

ARMY REGULATIONS (AR)

95-series (Aviation)
310-series (Military Publications)
310-25 Dictionary of United States Army Terms
310-50 Authorized Abbreviations and Brevity Codes

DEPARTMENT OF THE ARMY PAMPHLETS (DA PAM)

310-series (Military Publications Indexes)

FIELD MANUALS (FM)

1-1 Terrain Flying
1-30 Meteorology for Army Aviators
1-60 Airspace Management and Army Air Traffic in a Combat Zone
90-1 Employment of Army Aviation Units in a High Threat Environment

TRAINING CIRCULARS (TC)

1-88 Aviator's Recognition Manual

TECHNICAL MANUALS (TM)

*TM 95-226 United States Standard for Terminal Instrument Procedures (TERPS)

*To order copies, write: S&I Directorate
USAATCA
ATTN: CCQ-AS-AI
Cameron Station
Alexandria, VA 22134
<table>
<thead>
<tr>
<th>MISCELLANEOUS PUBLICATIONS (MISC PUB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFM 51-40</td>
</tr>
<tr>
<td>DOD FLIP</td>
</tr>
<tr>
<td>FAA 7110-65</td>
</tr>
</tbody>
</table>
APPENDIX B

ATC SHORTHAND SYMBOLS

B-1. General
The number of flight clearances which must be delivered by ATC does not permit excessive repetitions of a clearance. Also the speaking rate is too rapid for longhand copying of the clearance. Occasionally ATC will issue a clearance which differs from the original flight plan. In such cases the aviator must be particularly alert to receive and understand the clearance given. Clarification should be requested if any doubt exists. As an aid in copying ATC clearances, a series of symbols has been devised for use as clearance shorthand.

B-2. Common ATC Shorthand Symbols

<table>
<thead>
<tr>
<th>Words and Phrases</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above (altitude in hundreds)</td>
<td>50</td>
</tr>
<tr>
<td>Advice</td>
<td>ADV</td>
</tr>
<tr>
<td>After (passing)</td>
<td><</td>
</tr>
<tr>
<td>Airway designation</td>
<td>V-7</td>
</tr>
<tr>
<td>All turns left</td>
<td></td>
</tr>
<tr>
<td>Alternate instructions</td>
<td>(---)</td>
</tr>
<tr>
<td>Altitude 6,000</td>
<td>60</td>
</tr>
<tr>
<td>And</td>
<td>&</td>
</tr>
<tr>
<td>Approach</td>
<td>AP</td>
</tr>
<tr>
<td>Approach control</td>
<td>APC</td>
</tr>
<tr>
<td>Army</td>
<td>R</td>
</tr>
<tr>
<td>At</td>
<td>@</td>
</tr>
<tr>
<td>ATC Clears</td>
<td>C</td>
</tr>
<tr>
<td>As a fix</td>
<td>FX</td>
</tr>
<tr>
<td>Before (passing)</td>
<td></td>
</tr>
<tr>
<td>Below (altitude in hundreds)</td>
<td>50</td>
</tr>
<tr>
<td>Climb (altitude in hundreds) immediately</td>
<td>150</td>
</tr>
<tr>
<td>Contact approach</td>
<td>CT</td>
</tr>
<tr>
<td>Contact (station) approach control</td>
<td>CT OZR</td>
</tr>
<tr>
<td>Contact (station) center</td>
<td>0ZR</td>
</tr>
<tr>
<td>Course</td>
<td>CR</td>
</tr>
<tr>
<td>Cleared to cross</td>
<td>X</td>
</tr>
<tr>
<td>Cruise</td>
<td></td>
</tr>
<tr>
<td>Delay indefinite</td>
<td>DLI</td>
</tr>
<tr>
<td>Depart</td>
<td>DP</td>
</tr>
<tr>
<td>Departure control</td>
<td>DC</td>
</tr>
<tr>
<td>Descend to (altitude in hundreds) immediately</td>
<td>130</td>
</tr>
<tr>
<td>Direct</td>
<td>DR</td>
</tr>
<tr>
<td>Directions (bound) Eastbound</td>
<td>EB</td>
</tr>
<tr>
<td>Westbound</td>
<td>WB</td>
</tr>
<tr>
<td>Northbound</td>
<td>NB</td>
</tr>
<tr>
<td>Southbound</td>
<td>SB</td>
</tr>
<tr>
<td>Inbound</td>
<td>IB</td>
</tr>
<tr>
<td>Outbound</td>
<td>OB</td>
</tr>
<tr>
<td>Each</td>
<td>EA</td>
</tr>
<tr>
<td>Enter (in) control area</td>
<td>▲</td>
</tr>
<tr>
<td>Estimated time of arrival</td>
<td>ETA</td>
</tr>
<tr>
<td>Expect approach clearance</td>
<td>EAC</td>
</tr>
<tr>
<td>Words and Phrases</td>
<td>Symbol</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>Expect further clearance</td>
<td>EFC</td>
</tr>
<tr>
<td>Fan marker</td>
<td>FM</td>
</tr>
<tr>
<td>Final</td>
<td>F</td>
</tr>
<tr>
<td>For further clearance</td>
<td>FFC</td>
</tr>
<tr>
<td>For further headings</td>
<td>FFH</td>
</tr>
<tr>
<td>From</td>
<td>FR</td>
</tr>
<tr>
<td>Heading</td>
<td>HDG</td>
</tr>
<tr>
<td>Hold (direction)</td>
<td>H-E</td>
</tr>
<tr>
<td>If not possible</td>
<td>OR</td>
</tr>
<tr>
<td>Initial approach</td>
<td>I</td>
</tr>
<tr>
<td>Intersection</td>
<td>INT</td>
</tr>
<tr>
<td>Intercept airway, jet route, or course</td>
<td></td>
</tr>
<tr>
<td>Left turn after take off</td>
<td>LT</td>
</tr>
<tr>
<td>Cleared to land</td>
<td>L</td>
</tr>
<tr>
<td>Locator outer marker</td>
<td>LOM</td>
</tr>
<tr>
<td>Maintain</td>
<td>M</td>
</tr>
<tr>
<td>Middle compass locator</td>
<td>ML</td>
</tr>
<tr>
<td>Middle marker</td>
<td>MM</td>
</tr>
<tr>
<td>Nondirectional radio beacon approach</td>
<td>NDB</td>
</tr>
<tr>
<td>Nonstandard pattern (for time in minutes)</td>
<td>2</td>
</tr>
<tr>
<td>No delay expected</td>
<td></td>
</tr>
<tr>
<td>Outer marker</td>
<td>OM</td>
</tr>
<tr>
<td>Out of (leave) control area</td>
<td></td>
</tr>
<tr>
<td>Over (station)</td>
<td>OZR</td>
</tr>
<tr>
<td>Outer compass locator</td>
<td>OL</td>
</tr>
<tr>
<td>On course</td>
<td>OC</td>
</tr>
<tr>
<td>Procedure turn</td>
<td>PT</td>
</tr>
<tr>
<td>Radar vector</td>
<td>RV</td>
</tr>
<tr>
<td>(Numerical designation) radial</td>
<td>O45R</td>
</tr>
<tr>
<td>Remain well to left side</td>
<td>LS</td>
</tr>
<tr>
<td>Remain well to right side</td>
<td>RS</td>
</tr>
<tr>
<td>Report crossing</td>
<td>RX</td>
</tr>
<tr>
<td>Report departing</td>
<td>RD</td>
</tr>
<tr>
<td>Report leaving</td>
<td>RL</td>
</tr>
<tr>
<td>Report over</td>
<td>RO</td>
</tr>
<tr>
<td>Report passing</td>
<td>RP</td>
</tr>
<tr>
<td>Report reaching</td>
<td>RR</td>
</tr>
<tr>
<td>Request further altitude changes en route</td>
<td>RFACE</td>
</tr>
<tr>
<td>Reverse course</td>
<td>RC</td>
</tr>
<tr>
<td>Right turn after takeoff</td>
<td>RT</td>
</tr>
<tr>
<td>Runway (numerical designation)</td>
<td>RY18</td>
</tr>
<tr>
<td>Standard range</td>
<td>SR</td>
</tr>
<tr>
<td>Standby</td>
<td>SBY</td>
</tr>
<tr>
<td>Straight in</td>
<td>S1</td>
</tr>
<tr>
<td>Take off (or takeoff) (direction)</td>
<td>T → N</td>
</tr>
<tr>
<td>Tower</td>
<td>T</td>
</tr>
<tr>
<td>Traffic is</td>
<td>TFC</td>
</tr>
<tr>
<td>Track</td>
<td>TR</td>
</tr>
<tr>
<td>Until</td>
<td>U</td>
</tr>
<tr>
<td>Until advised (by)</td>
<td>UA</td>
</tr>
<tr>
<td>Until further advised</td>
<td>UFA</td>
</tr>
<tr>
<td>VFR conditions on top</td>
<td>VFR</td>
</tr>
<tr>
<td>Via</td>
<td>VIA</td>
</tr>
<tr>
<td>While in control area</td>
<td></td>
</tr>
</tbody>
</table>
B-3. Examples

a. "Army 72888, cleared ILS approach to Cairns, to runway 36, maintain 300 to outer compass locator, over."

 C ILS AP OZR RY 36 M 30 OL

b. "Army 72888, expect ILS approach to Cairns, landing runway 36, wind 360 degrees at one zero, weather 600 feet overcast, visibility 2 miles in light rain and fog, altimeter 29.38, over."

 ILS OZR LDG RY 36, 360/10 WX 6 OVC 2R-F 29.38

c. "Army 72888, radar contact 2 miles SE Hartford intersection, fly heading 270 for radar vector to ILS final approach course at Cairns, over."

 R 2 SE HARTFORD Δ HDG 270 RV ILS OZR
C-1. General

a. Planning for an IFR flight can be a simple operation requiring 10 minutes or it can be a complex operation requiring many hours. The extent of planning necessary is dependent on the nature of the mission, the type and number of aircraft on the mission, the distance to be flown, selected route, weather conditions, and available navigational facilities. The checklist items presented in this appendix provide general guidance for the individual aviator; they are especially applicable to instrument flight planning within the United States. The aviator's proficiency and judgment will dictate necessary modifications to these procedures and techniques.

b. An aviator assigned a specific mission usually must plan the flight for arrival at a fixed destination at a definite time. The type aircraft, the load, and the personnel on board are often predetermined by the mission. However, an aviator planning a proficiency flight can often choose the aircraft, the destination, route, time, and other factors which have a bearing on the flight. Where possible the aviator attempts to control the variable factors affecting his mission to produce optimum flight conditions.

C-2. Flight Planning Checklist

a. Weather Briefing Sources. A weather briefing can be obtained from the following persons or agencies:

(1) A military or civilian forecaster—in person.
(2) A forecaster—by local telephone.
(3) A recorded forecast—by local telephone.
(4) Flight Service Stations—in person.
(5) Flight Service Stations—by local or exchange telephone.
(6) Military or Weather Bureau forecasters—by long-distance collect telephone.

Note. Check current operational publications for procedures and listings.

b. Weather Data Briefing. The weather briefing should include—

(1) A forecast for destination and alternate airfields at estimated time of arrival to include—
 (a) Ceiling and visibility. Check for compliance with regulations. The destination forecast
 will determine the requirement for selecting an alternate. If the minimum conditions specified by
 AR 95-1 will exist at the destination, an alternate airport is not required.
 (b) Weather phenomena producing low ceilings and visibility.
 (c) Hazards to flight, including thunderstorms, icing, gusty winds, and high density altitude.
 (d) Height of cloud tops.
(2) An en route forecast to destination and alternate airfields to include—
 (a) Hazards to flight.
 (b) Freezing level.
 (c) Height of cloud tops and bases.
 (d) Flight level winds and temperatures.
(3) An overall weather picture. The aviator, with the aid of a forecaster if possible, should obtain a clear mental picture of the overall weather situation including location of highs, lows, and frontal systems. The rate and direction of their movement, and the weather conditions associated with them, should be clearly understood by the aviator.

c. Route Selection. Select the best route based on—

(1) Weather conditions.
(2) Preferred routes. Check current operational publications for listings. Deviate from preferred routes when safety or the mission requires it.
(3) Direct routing. File for direct flight only if the mission requires it or, if considerable savings of fuel or time can be realized. If the flight penetrates uncontrolled airspace, ATC will not provide traffic separation.

d. Route Survey. Conduct a route survey to the destination and alternate airfields, using navigational charts to determine—

(1) Primary radio aids for en route navigation. List frequencies, station identifiers, courses, and radials on the flight log.
(2) Supplementary radio aids to be used for position fixing and secondary navigation.
(3) Availability of air traffic control and weather radar en route.
(4) Distance between reporting points and total flight distance. Total distance is computed from takeoff to the destination radio facility.

(5) Minimum en route IFR altitude (MEA), minimum reception altitude (MRA), and minimum crossing altitude (MCA).

Note. Check NOTAM and chart revision notices for latest changes in the status of navigational aids. Check listing of VOR shutdown information for alternate routing where appropriate.

e. Altitude Selection. Select the best altitude for the flight based on—

(1) Weather conditions. Avoid altitudes where icing and turbulence will be hazardous.

(2) Direction. In uncontrolled airspace, direction of flight based on hemispherical rule (below 29,000 feet).

(a) Odd altitudes are requested on magnetic courses from 0° to 179°.

(b) Even altitudes are requested on magnetic courses from 180° to 359°.

(3) MEA, MRA, MCA.

(a) Select altitudes that comply with published minimum altitudes applicable to the flight.

(b) On direct flights, determine minimum altitude based on charted obstacles and the requirements of the regulations.

(c) Do not plan a flight at the MEA if the flight level temperature will be significantly below standard. Lowering of pressure levels in air significantly colder than standard will result in the true altitude being significantly lower than the indicated altitude. Request an altitude assignment above the MEA under these cold air temperature conditions.

(4) Aircraft performance and equipment. In selecting a flight altitude consider—

(a) Optimum operating conditions for the aircraft.

(b) Availability of oxygen.

(c) Radio equipment limitations (range, altitude, etc.).

(5) Air traffic control.

(a) Avoid relatively low altitudes which may conflict with approach control service in complex terminal areas.

(b) Do not request unnecessary altitude changes.

f. Departure.

(1) Plan the departure to comply with standard instrument departures (SID) at airports for which they have been established since ATC normally will employ SID if available. Be familiar with all SID since the controller may not authorize the particular one requested.

(2) Check for availability of departure control (conventional or radar). Note appropriate frequencies.

(3) Study the local area chart if one is published, or study the departure area on the en route chart. Become familiar with the radio facilities and intersections within the departure area.

g. True Airspeed.

(1) Compute and file the true airspeed (TAS) accurately. Recompute the TAS later in flight to verify preflight calculation. If the actual TAS varies more than 10 knots from the filed TAS, notify ATC of the difference.

(2) Base true airspeed computation on the known indicated airspeed for normal cruise and the forecast flight level temperature, or consult the aircraft operator’s manual for true airspeeds based on gross weight, altitude, temperature, and desired cruise conditions (e.g., maximum range, maximum endurance, and short range).

Note. True airspeeds of a given aircraft can vary considerably depending on weight, altitude, and desired cruise condition. Don’t guess—consult the aircraft operator’s manual.

h. Groundspeed. Compute groundspeed for each leg of the flight by combining the forecast winds with planned courses and the true airspeed (chap 14).

i. Estimated Time En Route (ETE).

(1) Based on groundspeed and distance, compute the ETE for each leg of the flight between reporting points.

(a) On the initial leg, allow sufficient additional time for the planned departure and climb to flight altitude.

(b) If en route climbs are made at reduced airspeed, allow additional time for significant changes on the leg.

(2) Compute the total ETE for the flight. This will be the estimated time required to reach the destination radio facility. Subsequent time required for transition, holding, and approach at the destination is not included in the ETE on an IFR flight.

(3) Compute the ETE to the alternate airfield from the destination or other critical position along the flightpath.

j. Fuel.

(1) Compute the “fuel-on-board” flight plan entry by subtracting the warmup and takeoff fuel allowance (see the aircraft operator’s manual) from the total fuel on board and dividing this quantity by the cruise consumption rate. The cruise consumption rate is determined by the cruise conditions and aircraft gross weight, as explained in the aircraft operator’s manual.
(2) Compute total fuel required for the flight based on the appropriate consumption rate specified in the operator's manual, and include allowance for—

(a) Warmup and takeoff.
(b) Initial climb (consult aircraft operator's manual for extended climbs).
(c) En route cruise to destination and alternate. Allow time in addition to ETE for known en route delays required by the mission. En route ATC delays usually cannot be anticipated.
(d) Fuel reserves required for IFR flight (AR 95–1).

(3) Compute surplus fuel by subtracting total fuel required from total fuel capacity.

Note. Surplus fuel is important since en route traffic delays, holding at the destination, and the instrument approach are not provided for in the fuel requirements specified in (2)(a) through (d) above. Reserve fuel is for UNFORESEEN circumstances. Do not plan to use reserves for routine delays.

k. Terminal Area.

(1) If an area chart is published for the destination, study it carefully to become familiar with—

(a) Radio facilities and intersections.
(b) Published transitions and STARS.

(2) Study all published destination approaches which the aircraft is equipped to make. Become familiar with—

(a) Transitions.
(b) Final approach courses.
(c) Procedure turns.
(d) Approach minimums (decision height, or minimum descent altitude, ceiling, and visibility).
(e) Restriction, warning, and caution notes.

l. Aircraft Clearance Form (Flight Plan). Army aviators will use the DD Form 175 (Military Flight Plan) for flights within conterminous US, Hawaiian, Alaskan, and San Juan Domestic Control Areas and for flights from conterminous US to Canada. FAA Form 7233–1 or 7233.3 (Flight Plan) may be used in lieu of DD Form 175 when departing US installations not having a military base operation facility.

m. Flight Log. The use of the Army Aviation Instrument Flight Log (DA Form 2283) is recommended. This provides for a concise summary of data required to execute the flight, allows for inflight revision of data, and provides an accurate record of the flight. The flight log normally is supplemented by reference to the appropriate radio navigation chart.
D—1. AN/ARC–44 Aural Homing

a. General. The AN/ARC–44 FM radio provides an aural homing system capable of homing to any FM radio transmitter that transmits in a frequency range of 24.0 to 51.9 MegaHertz (MHz). The operation of this system is based on the phase of the incoming signal as it reaches the antennas. If the signal reaches the left antenna first, the aviator will hear the letter D(-..) in Morse code. If the signal reaches the right antenna first, the aviator will hear the letter U (..-) in Morse code. When the signal reaches both antennas simultaneously, a solid tone will be heard and the station will be directly in front of or behind the aircraft (fig D–1).

b. Operation.

(1) Set AN/ARC–44 for normal operation.
(2) Select the desired frequency and identify the station. Use authentication for positive identification.
(3) Instruct station operator to key his transmitter for periods of 30 seconds with 10-second pauses between transmissions.
(4) Set the Com-Home Switch to HOME position.
(5) Listen to the signal received.
 (a) If a D (-..) is heard, turn left.
 (b) If a U (..-) is heard, turn right.
 (c) If a steady solid tone is heard, turn slightly off course and then respond to the D or U signal. The signal received will indicate the direction to the station. Turn in the direction which is indicated by the signal until a continuous tone is received. At this time the aircraft will be going toward the station.

c. Station Passage. To determine station passage, turn off course at 1- or 2-minute intervals; turn each time in the same direction, listen to the signal, and turn back on course. A reversal of the signals will indicate station passage. Also, the station operator should be requested to inform the aviator when the aircraft passes over the station.

D—2. AN/ARC–54 Visual Homing

a. General. The AN/ARC–54 homing system requires a homing indicator (ID–48 or ID–453 Omni indicator) and homing antenna system (towel rack) which allows the pilot to home on any signal transmitted within the set's frequency range of 30.00 to 69.95 MHz. Data provided by the homing facility is displayed visually on the course indicator, which is mounted on the instrument panel. Voice capability is provided in all three operating positions.

b. Operation.

(1) Establish contact with the station and specify a definite key period and pause period.
(2) Set the mode control to HOME.
(3) Set the SQUELCH control to CARR.
(4) Observe the deviation indicator. If sufficient signal strength is being received, the off flags on the course indicator will disappear. The position of the deviation indicator indicates the direction either left/right or on course to the station. A turn in the direction of the needle will cause it to center.
(5) If upon tuning the station the needle is centered, a turn should be made to insure that the system is functioning properly. Normal procedure should be followed as explained in (4) above if the needle deflects left or right during the turn.
(6) To determine station passage, turn off course at 1- to 2-minute intervals, each time in the same direction. Follow the vertical needle to return to an on-course indication (centered needle). Station passage will be indicated by a reversal of the vertical needle indication.

Note. Horizontal needle displays relative signal strength of station and should be used as a guide only for determining station passage.

d. Station Passage.

D—3. AN/ARC–131 Visual Homing

General. The AN/ARC–131 homing system requires the same equipment as the AN/ARC–54 (Omni indicator, and towel rack antenna) and employs the same operational procedures.
Figure D-1. Orientation and homing using an FM signal.
INDEX

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A pattern</td>
<td>6-3</td>
</tr>
<tr>
<td>Common errors</td>
<td>6-3d</td>
</tr>
<tr>
<td>Absolute altitude</td>
<td>2-33c</td>
</tr>
<tr>
<td>Accelerator error</td>
<td>2-6c(2)</td>
</tr>
<tr>
<td>Accelerations and decelerations (rotary wing)</td>
<td>5-28</td>
</tr>
<tr>
<td>ADF (automatic direction finder):</td>
<td>5-19</td>
</tr>
<tr>
<td>NDB approach:</td>
<td>18-6, 19-10</td>
</tr>
<tr>
<td>Clearance</td>
<td>18-22, 19-14</td>
</tr>
<tr>
<td>Final</td>
<td>18-2d, 19-15</td>
</tr>
<tr>
<td>Holding</td>
<td>18-14—-18-10—</td>
</tr>
<tr>
<td>19-12—19-7—</td>
<td></td>
</tr>
<tr>
<td>19-14</td>
<td>19-11</td>
</tr>
<tr>
<td>Beat frequency oscillator (BFO)</td>
<td>17-22b</td>
</tr>
<tr>
<td>Course interception</td>
<td>17-9, 17-10</td>
</tr>
<tr>
<td>Homing</td>
<td>17-4</td>
</tr>
<tr>
<td>Indicator (radio compass)</td>
<td>17-3e</td>
</tr>
<tr>
<td>Loop operation</td>
<td>17-22—17-14—</td>
</tr>
<tr>
<td>Maintaining a course</td>
<td>17-5</td>
</tr>
<tr>
<td>Missed approach</td>
<td>17-3</td>
</tr>
<tr>
<td>Orientation</td>
<td>17-4</td>
</tr>
<tr>
<td>Position fixing</td>
<td>17-8</td>
</tr>
<tr>
<td>Procedure turn</td>
<td>18-8—18-6—</td>
</tr>
<tr>
<td>Receiver</td>
<td>18-12</td>
</tr>
<tr>
<td>Relative bearing</td>
<td>17-12</td>
</tr>
<tr>
<td>Station passage</td>
<td>17-6</td>
</tr>
<tr>
<td>Time and distance to station</td>
<td>17-11</td>
</tr>
<tr>
<td>Aeronautical charts (See Charts: Aeronautical)</td>
<td>10-1</td>
</tr>
<tr>
<td>Aeronautical information (on charts)</td>
<td>10-4c</td>
</tr>
<tr>
<td>Agonic line</td>
<td>2-6a</td>
</tr>
<tr>
<td>AIMS altimeter (counter-drum-pointer)</td>
<td>2-30c</td>
</tr>
<tr>
<td>Air navigation</td>
<td>7-1</td>
</tr>
<tr>
<td>Air navigation charts (See Charts: Aeronautical)</td>
<td>2-16</td>
</tr>
<tr>
<td>Airport surveillance radar (ASR)</td>
<td>21-3</td>
</tr>
<tr>
<td>Air route surveillance radar (ARSR)</td>
<td>21-2</td>
</tr>
<tr>
<td>Airspeed:</td>
<td>2-23, 12-5</td>
</tr>
<tr>
<td>Computations (CPU-26A/P)</td>
<td>14-15</td>
</tr>
<tr>
<td>Constant</td>
<td>4-6</td>
</tr>
<tr>
<td>Indicated</td>
<td>2-36a, 12-5</td>
</tr>
<tr>
<td>Indicator</td>
<td>12-5</td>
</tr>
<tr>
<td>True</td>
<td>2-36c, 12-5</td>
</tr>
<tr>
<td>Airspeed indicator</td>
<td>2-34, 2-35, 2-29, 2-22, 12-5</td>
</tr>
<tr>
<td>Construction</td>
<td>2-34</td>
</tr>
<tr>
<td>Operation</td>
<td>2-35</td>
</tr>
<tr>
<td>Airspeed settings:</td>
<td>2-22</td>
</tr>
<tr>
<td>Fixed wing</td>
<td>5-3</td>
</tr>
<tr>
<td>Rotary wing</td>
<td>5-14</td>
</tr>
<tr>
<td>Air traffic control equipment (radar) (See Radar)</td>
<td>5-10</td>
</tr>
<tr>
<td>Air traffic control procedures (radar) (See Radar)</td>
<td>16-11</td>
</tr>
<tr>
<td>Air traffic control shorthand symbols</td>
<td>App B</td>
</tr>
<tr>
<td>Airways</td>
<td>16-11</td>
</tr>
<tr>
<td>Alternate source: Static pressure</td>
<td>2-7a</td>
</tr>
<tr>
<td>Vacuum</td>
<td>2-10</td>
</tr>
<tr>
<td>Altimeter, pressure: Construction</td>
<td>2-29</td>
</tr>
<tr>
<td>Definition</td>
<td>2-28</td>
</tr>
<tr>
<td>Effects of nonstandard temperatures and pressures</td>
<td>2-31</td>
</tr>
<tr>
<td>Errors</td>
<td>2-31a</td>
</tr>
<tr>
<td>Reading</td>
<td>2-30</td>
</tr>
<tr>
<td>Setting</td>
<td>2-32</td>
</tr>
<tr>
<td>Altitude computations (CPU-26A/P)</td>
<td>14-17</td>
</tr>
<tr>
<td>Altitude, constant</td>
<td>4-7</td>
</tr>
<tr>
<td>Attitudes: Absolute</td>
<td>2-33c</td>
</tr>
<tr>
<td>Density</td>
<td>2-33e</td>
</tr>
<tr>
<td>Indicated</td>
<td>2-33a</td>
</tr>
<tr>
<td>Pressure</td>
<td>2-33b</td>
</tr>
<tr>
<td>True</td>
<td>2-33d</td>
</tr>
<tr>
<td>Ambiguity (loop)</td>
<td>17-23d</td>
</tr>
<tr>
<td>Angles</td>
<td>8-5</td>
</tr>
<tr>
<td>Apparent precession</td>
<td>2-8b</td>
</tr>
<tr>
<td>Approach (See ADF, ILS, VOR, and radar)</td>
<td>15-10</td>
</tr>
<tr>
<td>Attentuation</td>
<td>4-9</td>
</tr>
<tr>
<td>Attitude, banking</td>
<td>4-19</td>
</tr>
<tr>
<td>Attitude indicator: Banking attitude</td>
<td>4-19</td>
</tr>
<tr>
<td>Electric (J-8)</td>
<td>2-15</td>
</tr>
<tr>
<td>Caging</td>
<td>2-17a, 2-17c</td>
</tr>
<tr>
<td>Construction</td>
<td>2-16</td>
</tr>
<tr>
<td>Errors</td>
<td>2-17</td>
</tr>
<tr>
<td>Operation</td>
<td>2-18</td>
</tr>
<tr>
<td>Positioning</td>
<td>2-16</td>
</tr>
<tr>
<td>Electric (Lear Model 400G)</td>
<td>2-15</td>
</tr>
<tr>
<td>Navigation (ID-882)</td>
<td>2-15</td>
</tr>
<tr>
<td>Pitch attitude</td>
<td>4-11</td>
</tr>
<tr>
<td>Vacuum: Caging and uncaging</td>
<td>2-17c</td>
</tr>
<tr>
<td>Construction</td>
<td>2-16</td>
</tr>
<tr>
<td>Errors</td>
<td>2-17</td>
</tr>
<tr>
<td>Operation</td>
<td>2-18</td>
</tr>
<tr>
<td>Attitude instrument flying: Definition</td>
<td>1-2a</td>
</tr>
<tr>
<td>Power, pitch, and bank control</td>
<td>4-1</td>
</tr>
<tr>
<td>Sensations</td>
<td>3-1</td>
</tr>
<tr>
<td>Aural null</td>
<td>17-23</td>
</tr>
<tr>
<td>Autorotations</td>
<td>5-27</td>
</tr>
<tr>
<td>Average groundspeed</td>
<td>13-7</td>
</tr>
<tr>
<td>Azimuth (See Measurement: Direction)</td>
<td>13-3</td>
</tr>
<tr>
<td>B pattern</td>
<td>6-4</td>
</tr>
<tr>
<td>Common errors</td>
<td>6-4c</td>
</tr>
<tr>
<td>Back course</td>
<td>20-3a, 20-9</td>
</tr>
</tbody>
</table>

INDEX-1
<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank control</td>
<td>4-19</td>
</tr>
<tr>
<td>Common errors</td>
<td>4-25</td>
</tr>
<tr>
<td>To produce balanced straight flight</td>
<td>4-19</td>
</tr>
<tr>
<td>Trim</td>
<td>4-23</td>
</tr>
<tr>
<td>Bank indicating instruments:</td>
<td></td>
</tr>
<tr>
<td>Attitude indicator</td>
<td>4-20</td>
</tr>
<tr>
<td>Heading indicator</td>
<td>4-21</td>
</tr>
<tr>
<td>Turn-and-slip indicator</td>
<td>4-19</td>
</tr>
<tr>
<td>Barometric scale</td>
<td>2-306</td>
</tr>
<tr>
<td>Beacons, marker</td>
<td>20-6</td>
</tr>
<tr>
<td>Beacon passage:</td>
<td></td>
</tr>
<tr>
<td>ADF</td>
<td>17-5</td>
</tr>
<tr>
<td>FM homing</td>
<td>App D</td>
</tr>
<tr>
<td>ILS</td>
<td>20-4a</td>
</tr>
<tr>
<td>Loop</td>
<td>17-24</td>
</tr>
<tr>
<td>Radio magnetic indicator</td>
<td>16-8b</td>
</tr>
<tr>
<td>VOR</td>
<td>16-4b, 16-8b</td>
</tr>
<tr>
<td>Beat frequency oscillator</td>
<td>17-22b</td>
</tr>
<tr>
<td>Calibrated airspeed</td>
<td>2-36b, 12-5</td>
</tr>
<tr>
<td>Cardinal points</td>
<td>8-12</td>
</tr>
<tr>
<td>Charts:</td>
<td></td>
</tr>
<tr>
<td>Aeronautical:</td>
<td></td>
</tr>
<tr>
<td>Photomaps</td>
<td>9-12</td>
</tr>
<tr>
<td>Sectional</td>
<td>9-10, 10-4a(3)</td>
</tr>
<tr>
<td>Symbols</td>
<td>10-4</td>
</tr>
<tr>
<td>Tactical</td>
<td>9-13</td>
</tr>
<tr>
<td>World aeronautical (WAC)</td>
<td>9-11, 11-3b</td>
</tr>
<tr>
<td>Air navigation</td>
<td>9-1</td>
</tr>
<tr>
<td>Approach</td>
<td>19-2</td>
</tr>
<tr>
<td>Characteristics</td>
<td>9-4</td>
</tr>
<tr>
<td>Conformity</td>
<td>9-7d</td>
</tr>
<tr>
<td>Distortion</td>
<td>9-3</td>
</tr>
<tr>
<td>Gaticule</td>
<td>9-5, 9-7</td>
</tr>
<tr>
<td>Grid system</td>
<td>8-5</td>
</tr>
<tr>
<td>Lambert</td>
<td>9-7</td>
</tr>
<tr>
<td>Mercator</td>
<td>9-8a</td>
</tr>
<tr>
<td>Polar stereographic</td>
<td>9-9a</td>
</tr>
<tr>
<td>Projections (See Projection)</td>
<td></td>
</tr>
<tr>
<td>Reading:</td>
<td></td>
</tr>
<tr>
<td>Appearance of terrain</td>
<td>10-7</td>
</tr>
<tr>
<td>Checkpoints</td>
<td>10-6</td>
</tr>
<tr>
<td>In-flight technique</td>
<td>10-9</td>
</tr>
<tr>
<td>Pilots</td>
<td>10-1, 10-8</td>
</tr>
<tr>
<td>Symbols</td>
<td>10-4</td>
</tr>
<tr>
<td>Scales</td>
<td>9-2</td>
</tr>
<tr>
<td>Standard parallels</td>
<td>9-7b</td>
</tr>
<tr>
<td>Checkpoints (See Intersections)</td>
<td></td>
</tr>
<tr>
<td>Arcs</td>
<td>8-6b</td>
</tr>
<tr>
<td>Central angle</td>
<td>8-6c</td>
</tr>
<tr>
<td>Diameter</td>
<td>8-1</td>
</tr>
<tr>
<td>Great</td>
<td>8-6a</td>
</tr>
<tr>
<td>Radius</td>
<td>8-6c, 8-6d</td>
</tr>
<tr>
<td>Reference:</td>
<td></td>
</tr>
<tr>
<td>Equator</td>
<td>8-8</td>
</tr>
<tr>
<td>Latitude</td>
<td>8-11a</td>
</tr>
<tr>
<td>Longitude</td>
<td>8-11b</td>
</tr>
<tr>
<td>Meridians</td>
<td>8-10</td>
</tr>
<tr>
<td>Parallels</td>
<td>8-7, 8-9</td>
</tr>
<tr>
<td>Poles</td>
<td>8-7, 8-10</td>
</tr>
<tr>
<td>Small</td>
<td>8-5, 8-6, 8-9</td>
</tr>
<tr>
<td>Clearance:</td>
<td></td>
</tr>
<tr>
<td>Expected approach</td>
<td>19-7</td>
</tr>
<tr>
<td>Final approach</td>
<td>19-7</td>
</tr>
<tr>
<td>Holding</td>
<td>18-22</td>
</tr>
<tr>
<td>Missed approach</td>
<td>18-13</td>
</tr>
<tr>
<td>Shorthand</td>
<td>App B</td>
</tr>
<tr>
<td>Straight-in</td>
<td>18-3</td>
</tr>
<tr>
<td>Transition/feeder</td>
<td>18-6, 18-7</td>
</tr>
<tr>
<td>Climbing turns:</td>
<td></td>
</tr>
<tr>
<td>Fixed wing</td>
<td>5-10</td>
</tr>
<tr>
<td>Common errors</td>
<td>5-10b</td>
</tr>
<tr>
<td>Rotary wing</td>
<td>5-24</td>
</tr>
<tr>
<td>Common errors</td>
<td>5-24c</td>
</tr>
<tr>
<td>Climbs, straight (See Straight climbs (fixed and rotary wing))</td>
<td></td>
</tr>
<tr>
<td>Codes (transponder)</td>
<td>21-13a</td>
</tr>
<tr>
<td>Compass:</td>
<td></td>
</tr>
<tr>
<td>Magnetic</td>
<td>2-1</td>
</tr>
<tr>
<td>Radio</td>
<td>16-5</td>
</tr>
<tr>
<td>Compass turns:</td>
<td></td>
</tr>
<tr>
<td>Fixed wing</td>
<td>5-11</td>
</tr>
<tr>
<td>Common errors</td>
<td>5-11d</td>
</tr>
<tr>
<td>Rotary wing</td>
<td>5-11, 5-21</td>
</tr>
<tr>
<td>Common errors</td>
<td>5-11d</td>
</tr>
<tr>
<td>Compensator assembly</td>
<td>2-4</td>
</tr>
<tr>
<td>Constant airspeed</td>
<td>4-6</td>
</tr>
<tr>
<td>Contours</td>
<td>10-4a(2)</td>
</tr>
<tr>
<td>Control:</td>
<td></td>
</tr>
<tr>
<td>Airspeed, constant</td>
<td>4-6</td>
</tr>
<tr>
<td>Altitude, constant</td>
<td>4-7</td>
</tr>
<tr>
<td>Altitude</td>
<td>4-8</td>
</tr>
<tr>
<td>Bank</td>
<td>4-19</td>
</tr>
<tr>
<td>Pitch</td>
<td>4-11</td>
</tr>
<tr>
<td>Power</td>
<td>4-4</td>
</tr>
<tr>
<td>Coordinates</td>
<td>5-6</td>
</tr>
<tr>
<td>Course:</td>
<td></td>
</tr>
<tr>
<td>Magnetic</td>
<td>12-2b</td>
</tr>
<tr>
<td>Measuring</td>
<td>8-13</td>
</tr>
<tr>
<td>Plotting</td>
<td>10-13c, 11-4</td>
</tr>
<tr>
<td>Course indicator (VOR):</td>
<td></td>
</tr>
<tr>
<td>Components</td>
<td>16-4a</td>
</tr>
<tr>
<td>Course selector:</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>16-4a</td>
</tr>
<tr>
<td>Selecting a course</td>
<td>16-8a</td>
</tr>
<tr>
<td>Using the course reciprocal</td>
<td>16-10a</td>
</tr>
<tr>
<td>Deviation indicator (needle):</td>
<td></td>
</tr>
<tr>
<td>Centered</td>
<td>16-4c(1)</td>
</tr>
<tr>
<td>Deflected</td>
<td>16-4c(2)</td>
</tr>
<tr>
<td>Description</td>
<td>16-4e</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>16-4c(2)</td>
</tr>
<tr>
<td>Glide slope indicator</td>
<td>16-4d</td>
</tr>
<tr>
<td>ID-883</td>
<td>2-23d</td>
</tr>
<tr>
<td>To-from indicator</td>
<td>16-4b, 16-10</td>
</tr>
<tr>
<td>Warning flags</td>
<td>16-4d</td>
</tr>
<tr>
<td>Course selector (VOR)</td>
<td>16-4a</td>
</tr>
<tr>
<td>CPU-26A/P dead reckoning computer (grid side):</td>
<td></td>
</tr>
<tr>
<td>Correcting the reported wind</td>
<td>14-30</td>
</tr>
<tr>
<td>Description</td>
<td>14-21, 14-22</td>
</tr>
<tr>
<td>Heading and airspeed computations</td>
<td>14-27</td>
</tr>
<tr>
<td>Heading and groundspeed computations</td>
<td>14-26</td>
</tr>
<tr>
<td>Sliding grid</td>
<td>14-22</td>
</tr>
<tr>
<td>Wind triangle</td>
<td>14-23, 14-30</td>
</tr>
<tr>
<td>Wind velocity computations</td>
<td>14-28</td>
</tr>
<tr>
<td>CPU-26A/P dead reckoning computer (slide rule face):</td>
<td></td>
</tr>
<tr>
<td>Airspeed computation</td>
<td>14-15</td>
</tr>
<tr>
<td>Altitude computations</td>
<td>14-17</td>
</tr>
</tbody>
</table>
Density altitude computation
Distance
Distance conversion
Distance correction
Fuel consumption calculations
Groundspeed computation
Indexes
Off-course correction
Proportion
Radius of action (fixed base)
Ratio
Rule of 60
Scales
Time-distance computation
Cross-checking:
Bank instruments
Definition
Pitch attitude instruments
Power instruments
Versus intuition
Crosswind
Cultural chart symbols
Current, electrical
Cycle
Dead reckoning:
Computers
Instruments
Navigation
Decelerations
Degrees (angular)
Density altitude
Descending turns:
Fixed wing
Common errors
Rotary wing
Common errors
Descents, straight (fixed wing)
Descents, straight (rotary wing)
Deviation card
Deviation errors, magnetic compass
DF (direction finding) steers: Radar
Dip angle
Directional gyro
Distance conversion computation
Distance measurement
Distortion
Dividers
Double-angle course interception
Drift corrections
Application
Computation, CPU-26A/P
Course
During tracking:
ADF
VOR
Heading
Holding
Procedure turn
Earth:
Direction measuring
Distance
Inclination
Measurement (See Measurement: Direction and Distance)
Position designation
Revolution
Rotation
Shape
Electric attitude indicator
Electric heading indicator
Electrically driven gyros
Emergency signals
Equator
Equilibrium
Errors:
Acceleration
Bank control
Magnetic compass
Pitch attitude control
Estimated time of arrival (ETA)
Estimated time en route (ETE)
Expected approach clearance
FAA weather advisories
Feeder routes
Final approach (ADF, VOR, ILS)
Fixes
Final approach (ADF, VOR, ILS) (See ADF, VOR, ILS approaches)
Flush type pitot-static system
FM homing
Frequency: Classification
Front course
Fuel consumption (CPU-26A/P)
Fuel consumption (planning)
GCA
Geographic North Pole
Glide slope (ILS)
Grisette
Great circle
Greenwich meridian
Grid system (charts)
Ground controlled approach
GCA (See also Radar: Air traffic control procedures: Approach control (GCA))
Communications 21-12 21-5
PAR (precision approach radar) 21-9e 21-5
Ground weather radar 21-15— 21-7

Gyros:
Definition 2-6 2-4
Electrically driven 2-11 2-6
Heading indicator 2-12 2-5
Instrument power source 2-9—2-11 2-5—2-6
Mode of operation 2-13 2-6
Mountings 2-7 2-4
Vacuum driven 2-10 2-5

Gyrosopic properties:
Precession 2-8b 2-6
Rigidity in space 2-8a 2-6

Heading:
Compass 2-1, 12-2b 2-1, 12-1
Drift and groundspeed 13-2d 13-1
Magnetic 2-1, 12-2b 2-1, 12-1
Track and groundspeed 13-2e 13-2
True 12-2 12-1

Heading and airspeed computations (CPU-26A/P) 14-27 14-14
Heading and groundspeed computations 14-26 14-13

Heading indicator:
Banking or turning 4-19 4-9
Course indicator ID-883 2-23d 2-14
Electric ID-567/ASN 2-23d 2-14
Magnetic compass (See Magnetic compass) 22-2 2-12
Radio magnetic:
ID-250/ARN 2-22 2-12
ID-998/ASN 2-22, 2-27 2-12, 2-16
Vacuum 2-15 2-8

Headwind 13-2f, 13-6 13-2, 13-3
High frequency propagation 15-12 15-6

Holding:
ADF:
Airspeeds 19-4 19-3
Clearances and reports 19-11 19-6
Course 19-5 19-3
Descent in pattern 19-6 19-4
Drift correction 18-21, 19-6c 18-13, 19-3
Entry 19-12 19-7

VOR:
Airspeed 18-17, 19-4c 18-11, 19-3
Drift correction 18-21, 19-6c 18-13, 19-3
Entry 18-19, 19-12 18-12, 19-7
Stacking 18-23 18-13
Timing 18-16, 19-5d 18-10, 19-4

Homing:
ADF 17-4 17-1
FM App D App D
Loop 17-24 17-15
Horizon bar, operation 2-16 2-8

IFR flight planning App C App C

Illusions:
Postural 3-4b 3-3
Sensory 3-1 3-1
Vertigo 3-1b 3-1
Vestibular 3-3b 3-2
Visual 3-2b 3-1

ILS (See Instrument landing system)
Inclination 8-4 8-2
Indicated airspeed 2-36a, 12-5 2-23, 12-2

Indicated altitude 2-33a 2-22
Indicator:
Airspeed 2-34 2-22
Altimeter 2-28 2-16
Attitude 2-14 2-8
Course, Indicator ID-883 2-23d 2-14
Heading 4-21 4-10
Navigation attitude (ID-882) 2-15 2-8
Slaved gyro magnetic (See Slaved gyro magnetic heading indicators)
Turn-end-slip 2-19 2-11
Vertical speed 2-37 2-23
Instantaneous vertical speed indicator (IVSI) 2-41 2-24

Instrument approach procedure (See also Approach: Instrument and ILS):
Holding 18-14— 18-10— 18-22 18-13
Missed approach 18-13 18-7
Procedure turns 18-8—18-12 18-6—18-7
Straight-in 18-3 18-1
Transitions/feeder 18-5, 18-6 18-4, 18-5

Instrument flying (See Attitude instrument flying)
Instruments indicating bank attitude:
Attitude indicator 4-20 4-10
Heading indicator 4-21 4-10
Turn-and-slip indicator 4-22 4-10
Ball 4-22b 4-11
Turn needle 4-22a 4-10

Instruments indicating pitch attitude:
Airspeed indicator 4-15 4-8
Altimeter 4-13 4-6
Attitude indicator 4-12 4-5
Vertical speed indicator 4-14 4-6

Instrument landing system (ILS):
Approach procedures:
Charts 18-6, 20-6 18-5
Clearance 20-6 20-6
Final 20-7, 20-8 20-7, 20-7
Holding 18-14— 18-10— 18-23, 18-14,
Missed approach 18-13, 20-8e 18-7
Procedure turn 18-4, 18-8— 18-4, 18-6—
Ground components 20-2 20-1

Instruments, navigation:
Airspeed indicator 12-5 12-2
Course indicator, ID-453 (VOR) 16-4 16-1
Dead reckoning 12-1 12-1
Heading indicator (gyro) 12-8 12-1
Magnetic compass 12-2 12-1
Radio magnetic indicator (RMI) 16-5, 17-3e 16-4, 17-1

Instruments, Power 4-6 4-2

Instrument takeoff:
Fixed wing 5-3 5-1
Common errors 5-6e 5-1
Rotary wing 5-14 5-10
Common errors 5-14d 5-10
Intercardinal points 8-12 8-4
Interception, course:
- ADF 17-9, 17-10, 17-5, 17-7
- Double-the-angle 16-125, 16-15
- Loop 17-25, 17-15
- RMI 17-9, 17-10, 17-5, 17-7
- VOR 16-12, 16-13

Intersections 16-11, 17-8, 16-11, 17-5

Intuition versus cross-checking 3-6, 3-3

Isogonic lines 2-6a, 2-3

Kollsman window 2-306, 2-33, 2-17, 2-22

Lag: Vertical speed indicator 2-39, 2-23

Lambert conformal projection 9-7, 9-3

Latitude 8-11a, 8-3

Level turns:
- Fixed wing 5-6, 5-3
- Rotary wing 5-19, 5-14
- Common errors 5-19b, 5-14
- LF/MF propagation 15-11, 15-6

Light systems (ILS) 20-2b(6), 20-1

Line-of-sight transmission 16-13, 15-6

Lines:
- Agonic 2-6a, 2-3
- Isogonic 2-6a, 2-3

Localizer, ILS:
- Back course 20-9, 20-9
- Blue sector 20-3, 20-2
- Front course 20-7, 20-7
- Location and signal 20-3, 20-2
- Needle deflection 20-3c, 20-4
- Receiver 20-3b, 20-3
- Tracking 20-3c, 20-4

Low (ADF):
- Ambiguity 17-23d, 17-15
- Beacon passage 17-24b, 17-15
- Homing 17-24, 17-15
- Null 17-23a, 17-15
- Orientation 17-23, 17-15
- Time and distance 17-26, 17-17
- Tracking 17-25, 17-15

Low frequency (See LF/MF propagation)

Low-level navigation:
- Altitude 10-7d, 10-4
- Flight plan graph 10-18/c, 10-8
- Night 10-18, 10-12
- Pilotage and dead reckoning 10-11d, 10-5
- Radio navigation 10-16, 10-11
- Routes 10-13c, 10-7
- Weather 10-17c, 10-12

Loxodromic curve 8-15, 8-6

Lubber line 2-4, 2-1

Magnetic:
- Compass 2-1, 12-2, 2-1, 12-1
- Compensator assembly 2-4, 2-1
- Construction 2-4, 2-1

Errors:
- Deviation 2-5b, 2-3
- Magnetic dip 2-6c, 2-3
- Acceleration 2-6c(2), 2-4
- Magnetic field 2-6c(4), 2-4
- Northerly turning 2-6c(1), 2-4
- Constructional compensation 2-6c(5), 2-4
- Oscillation 2-6c(3), 2-4
- Variation 2-6a, 2-3

INDEX-5
<table>
<thead>
<tr>
<th>Position fixing:</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitot static system</td>
<td>2-25</td>
</tr>
<tr>
<td>Phraseology, radio</td>
<td>21-14</td>
</tr>
<tr>
<td>Pattern B</td>
<td>6-3</td>
</tr>
<tr>
<td>PLU-2/C plotter</td>
<td>11-2c, 11-3, 11-4, 11-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pitch:</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attitude</td>
<td>4-11</td>
</tr>
<tr>
<td>Control</td>
<td>4-11</td>
</tr>
<tr>
<td>Cross-checking of instruments</td>
<td>4-2</td>
</tr>
<tr>
<td>Trim</td>
<td>4-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pitched indicating instruments:</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airspeed indicator</td>
<td>4-15</td>
</tr>
<tr>
<td>Altimeter</td>
<td>4-13</td>
</tr>
<tr>
<td>Attitude indicator</td>
<td>4-12</td>
</tr>
<tr>
<td>Vertical speed indicator</td>
<td>4-14</td>
</tr>
<tr>
<td>Pitot static system</td>
<td>2-25</td>
</tr>
<tr>
<td>Impact pressure</td>
<td>2-26</td>
</tr>
<tr>
<td>Static pressure</td>
<td>2-27</td>
</tr>
<tr>
<td>Pitot tube</td>
<td>2-26</td>
</tr>
<tr>
<td>Plotter (See PLU-2/C plotter)</td>
<td>9-6e</td>
</tr>
<tr>
<td>Plotting (position)</td>
<td>9-6</td>
</tr>
<tr>
<td>PLU-2/C plotter</td>
<td>11-2c, 11-3</td>
</tr>
<tr>
<td>Polar stereographic projection</td>
<td>9-9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power:</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airspeed settings, rotary</td>
<td>5-13</td>
</tr>
<tr>
<td>Changes</td>
<td>4-6</td>
</tr>
<tr>
<td>Control</td>
<td>4-4</td>
</tr>
<tr>
<td>Definition</td>
<td>4-4</td>
</tr>
<tr>
<td>Gyroscopic instrument, source</td>
<td>2-9</td>
</tr>
<tr>
<td>Instruments</td>
<td>4-5</td>
</tr>
<tr>
<td>Precision approach radar (PAR)</td>
<td>21-9e</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure:</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altimeter</td>
<td>2-28</td>
</tr>
<tr>
<td>Construction</td>
<td>2-29</td>
</tr>
<tr>
<td>Reading</td>
<td>2-30</td>
</tr>
<tr>
<td>Setting</td>
<td>2-32</td>
</tr>
<tr>
<td>Differential</td>
<td>2-25</td>
</tr>
<tr>
<td>Nonstandard effect</td>
<td>2-28</td>
</tr>
<tr>
<td>Prime meridian (Greenwich)</td>
<td>8-10, 8-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedure turns:</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment for wind</td>
<td>18-10</td>
</tr>
<tr>
<td>Minimum altitude</td>
<td>18-11</td>
</tr>
<tr>
<td>Teardrop</td>
<td>18-9e</td>
</tr>
<tr>
<td>Turning rate</td>
<td>18-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proficiency maneuvers (fixed wing):</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pattern A</td>
<td>6-3</td>
</tr>
<tr>
<td>Common errors</td>
<td>6-5d</td>
</tr>
<tr>
<td>Pattern B</td>
<td>6-4</td>
</tr>
<tr>
<td>Common errors</td>
<td>6-4c</td>
</tr>
<tr>
<td>Common errors</td>
<td>6-2d</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Projection:</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambert</td>
<td>9-7</td>
</tr>
<tr>
<td>Mercator</td>
<td>9-8</td>
</tr>
<tr>
<td>Modified polar stereographic</td>
<td>9-9</td>
</tr>
<tr>
<td>Polar stereographic</td>
<td>9-9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Properties of gyroscopic action</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-8</td>
<td>2-5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Radar:</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air traffic control procedures:</td>
<td>21-3, 21-9</td>
</tr>
<tr>
<td>Approaches (ASR and PAR)</td>
<td>21-1, 21-3</td>
</tr>
<tr>
<td>Arrival control</td>
<td>21-8</td>
</tr>
<tr>
<td>Assistance in emergency</td>
<td>21-12</td>
</tr>
<tr>
<td>Departure control</td>
<td>21-8a</td>
</tr>
<tr>
<td>En route control</td>
<td>21-7</td>
</tr>
<tr>
<td>Feeder routes</td>
<td>21-8b</td>
</tr>
<tr>
<td>Handoff</td>
<td>21-6</td>
</tr>
<tr>
<td>Monitor service</td>
<td>21-10</td>
</tr>
<tr>
<td>Target identification</td>
<td>21-5</td>
</tr>
<tr>
<td>Transfer of control</td>
<td>21-6</td>
</tr>
<tr>
<td>Phraseology</td>
<td>21-14</td>
</tr>
</tbody>
</table>

INDEX-6
Table 2-1: Standard pressure and temperatures at 1,000-foot intervals

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tactical instrument flight:</td>
<td></td>
</tr>
<tr>
<td>Aids, navigational</td>
<td>22-9e(2) 22-6</td>
</tr>
<tr>
<td>Altitudes</td>
<td>22-8, 22-13, 22-4, 22-10</td>
</tr>
<tr>
<td>Approaches</td>
<td>22-9e(1) 22-6</td>
</tr>
<tr>
<td>Communications</td>
<td>22-11d(6) 22-3</td>
</tr>
<tr>
<td>Course line, determining the</td>
<td>22-12 22-8</td>
</tr>
<tr>
<td>Definition</td>
<td>22-5 22-2</td>
</tr>
<tr>
<td>Employment, principles of</td>
<td>22-7 22-2</td>
</tr>
<tr>
<td>Flight clearance</td>
<td>22-7b 22-3</td>
</tr>
<tr>
<td>Flight-following</td>
<td>22-7b 22-3</td>
</tr>
<tr>
<td>Threat avoidance</td>
<td>22-7a 22-2</td>
</tr>
<tr>
<td>Flight routes selection</td>
<td>22-9a, b 22-5</td>
</tr>
<tr>
<td>Navigation, radio and dead-reckoning</td>
<td>22-13b, (1), (2), (3) 22-11, 22-12</td>
</tr>
<tr>
<td>Planning:</td>
<td></td>
</tr>
<tr>
<td>Preflight</td>
<td>22-11 22-7</td>
</tr>
<tr>
<td>Takeoff</td>
<td>22-14 22-14</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>22-2 22-1</td>
</tr>
<tr>
<td>Procedures:</td>
<td></td>
</tr>
<tr>
<td>Approach</td>
<td>22-17 22-18</td>
</tr>
<tr>
<td>Missed</td>
<td>22-17 22-24</td>
</tr>
<tr>
<td>Safety zone, construction of</td>
<td>22-15b(2) 22-20, 22-21</td>
</tr>
<tr>
<td>Straight-in</td>
<td>22-15b 22-20</td>
</tr>
<tr>
<td>Terminal</td>
<td>22-15a 22-18</td>
</tr>
<tr>
<td>Emergency</td>
<td>22-18 22-25</td>
</tr>
<tr>
<td>Aircraft deficiency</td>
<td>22-18c 22-26</td>
</tr>
<tr>
<td>Air defense</td>
<td>22-18a 22-25</td>
</tr>
<tr>
<td>Radio navigational aids, loss of</td>
<td>22-18b 22-25</td>
</tr>
<tr>
<td>Holding</td>
<td>22-16 22-22</td>
</tr>
<tr>
<td>Threat</td>
<td>22-3, 22-7a 22-1, 22-2</td>
</tr>
<tr>
<td>Training</td>
<td>22-8, 22-19 22-2, 22-27</td>
</tr>
<tr>
<td>22-20 22-27</td>
<td></td>
</tr>
<tr>
<td>Tailwind</td>
<td>13-2f, 13-6 13-2, 13-3</td>
</tr>
<tr>
<td>Takeoff, instrument:</td>
<td></td>
</tr>
<tr>
<td>Fixed wing</td>
<td>5-3 5-1</td>
</tr>
<tr>
<td>Rotary wing</td>
<td>5-14 5-10</td>
</tr>
<tr>
<td>Teardrop turn</td>
<td>18-9c 18-6</td>
</tr>
<tr>
<td>Time—distance computations (CPU-26A/P)</td>
<td>14-6 14-3</td>
</tr>
<tr>
<td>Time—distance to beacon:</td>
<td></td>
</tr>
<tr>
<td>ADF</td>
<td>17-11 17-8</td>
</tr>
<tr>
<td>VOR</td>
<td>16-13 16-17</td>
</tr>
<tr>
<td>Timed turns:</td>
<td></td>
</tr>
<tr>
<td>Fixed wing</td>
<td>5-9 5-5</td>
</tr>
<tr>
<td>Common errors</td>
<td>5-9e 5-6</td>
</tr>
<tr>
<td>Rotary wing</td>
<td>5-23 5-15</td>
</tr>
<tr>
<td>Common errors</td>
<td>5-23f 5-16</td>
</tr>
<tr>
<td>To-from indicator (VOR)</td>
<td>16-4b 16-2</td>
</tr>
<tr>
<td>Tracking:</td>
<td></td>
</tr>
<tr>
<td>ADF</td>
<td>17-4 17-1</td>
</tr>
<tr>
<td>ILS localizer</td>
<td>20-3 20-2</td>
</tr>
<tr>
<td>Loop</td>
<td>20-13 17-15</td>
</tr>
<tr>
<td>VOR</td>
<td>16-9 16-6</td>
</tr>
<tr>
<td>Track interception (See Interception, track)</td>
<td></td>
</tr>
<tr>
<td>Traffic control centers, air route</td>
<td>21-2 21-1</td>
</tr>
<tr>
<td>Transmissometer</td>
<td>20-26(2) 20-1</td>
</tr>
<tr>
<td>Transmitter:</td>
<td></td>
</tr>
<tr>
<td>ADF</td>
<td>17-1 17-1</td>
</tr>
<tr>
<td>ILS glide slope</td>
<td>20-4 20-4</td>
</tr>
<tr>
<td>ILS localizer</td>
<td>20-3 20-2</td>
</tr>
<tr>
<td>VOR</td>
<td>16-2 16-1</td>
</tr>
<tr>
<td>Transponder, use of</td>
<td>21-13 21-6</td>
</tr>
</tbody>
</table>

INDEX-8
Vectors:
- Radar 21-1b(5)
- Wind 14-23 14-12
- Velocities, triangle 14-22, 14-24, 14-12, 14-12
- Velocity, wind (See Wind: Direction and speed) 14-30 14-17
- Vertical S and S-l 6-2 6-1
- Vertical speed indicator 2-37 2-23
- Adjustment 2-40 2-23
- Construction 2-37 2-23
- IVSI 2-41 2-24
- Lag 2-39 2-23
- Operation 2-38 2-23

Vertigo 3-1b 3-1
Vestibular apparatus 3-3 3-1
Vestibular illusions 3-3b 3-2
Limitations 3-6 3-3

VHF omnidirectional range (See VOR)
- VHF propagation 15-13 15-5
- Victor airways 16-11 16-11
- Vision 3-2 3-1
- Visual illusions 3-2b 3-1

Voice communications (See Radio: Communications)

Voice procedures (See Radio: Communications)

VOR (VHF omnidirectional range):
- Approach:
 - Charts 18-6, 19-2 18-6, 19-1
 - Clearance 19-4 19-3
 - Final 19-7 19-6

Holding 18-14— 18-10— 18-11— 18-13, 19-9 18-7, 19-6
Missed approach 18-8—18-12 18-6—18-7
Procedure turn 16-2 16-1

Warning flags:
- Course indicator (VOR) 16-4 16-1
- Glide slope 16-4d 16-3
- Wavelength 15-2d 15-1
- Wave, radio 15-2a, 15-4 15-1, 15-1
- Wave transmission 15-2 15-1

Weather:
- Effect:
 - Low level navigation 10-17 10-11
 - Terrain appearance 10-7 10-4
 - Flight planning 10-3 10-4
 - Radar: Ground 21-15— 21-7
 - Static 15-11 15-6

Wind:
- Crosswind 13-2f, 13-6 13-2, 13-3
- Direction and speed 13-1 13-1
- Downwind 13-4 13-3
- Drift 13-2b, 13-4 13-1, 13-3
- Drift correction (See Drift correction) 13-1, 13-3
- Headwind 13-2f, 13-6 13-2, 13-3
- Tailwind 13-2f, 13-6 13-2, 13-3
- Triangle 14-23, 14-12, 14-12
 14-24, 14-30 14-17
- Upwind 13-4 13-3
- Vectors 14-23 14-12

Velocity computation (CPU-26A/P) 14-28 14-14

World aeronautical chart 9-11 9-8
The word "he" is intended to include both the masculine and the feminine genders. Any exceptions to this will be so noted.
STATEMENT

The word "he" is intended to include both the masculine and the feminine genders. Any exceptions to this will be so noted.
By Order of the Secretary of the Army:

FRED C. WEYAND
General, United States Army
Chief of Staff

Official:
PAUL T. SMITH
Major General, United States Army
The Adjutant General

Distribution:
Active Army, ARNG, USAR: To be distributed in accordance with DA Form 12-11A requirements for Army Aviation Techniques and Procedures (Qty rqr block no. 8), plus DA Form 12–31, Section I, Operator and Organizational requirements for all Fixed and Rotor Wing Aircraft (Qty rqr block no. 321).
INSTRUMENT FLYING AND NAVIGATION FOR ARMY AVIATORS

<table>
<thead>
<tr>
<th>PART ONE. ATTITUDE INSTRUMENT FLYING</th>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1. INTRODUCTION</td>
<td>1-1—1-3</td>
<td>1-1</td>
</tr>
<tr>
<td>2. FLIGHT INSTRUMENTS AND SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section I. The Magnetic Compass</td>
<td>2-1—2-5</td>
<td>2-1</td>
</tr>
<tr>
<td>II. Gyroscopic Principles</td>
<td>2-6—2-8</td>
<td>2-4</td>
</tr>
<tr>
<td>III. Gyroscopic Instrument Power Sources</td>
<td>2-9—2-11</td>
<td>2-6</td>
</tr>
<tr>
<td>IV. Gyro Heading Indicator</td>
<td>2-12, 2-13</td>
<td>2-6</td>
</tr>
<tr>
<td>V. Attitude Indicators</td>
<td>2-14—2-18</td>
<td>2-8</td>
</tr>
<tr>
<td>VI. Turn-and-Slip Indicator</td>
<td>2-19—2-21</td>
<td>2-11</td>
</tr>
<tr>
<td>VII. Slaved Gyro Compass Systems</td>
<td>2-22—2-24</td>
<td>2-12</td>
</tr>
<tr>
<td>VIII. The Pitot-Static System</td>
<td>2-25—2-27</td>
<td>2-15</td>
</tr>
<tr>
<td>IX. The Pressure Altimeter</td>
<td>2-28—2-33</td>
<td>2-16</td>
</tr>
<tr>
<td>X. The Airspeed Indicator</td>
<td>2-34—2-36</td>
<td>2-22</td>
</tr>
<tr>
<td>XI. The Vertical Speed Indicator</td>
<td>2-37—2-41</td>
<td>2-23</td>
</tr>
<tr>
<td>CHAPTER 3. SENSATIONS OF INSTRUMENT FLIGHT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section I. Disorientation and the Illusions of Flight</td>
<td>3-1—3-5</td>
<td>3-1</td>
</tr>
<tr>
<td>II. Overcoming Sensory Illusions</td>
<td>3-6</td>
<td>3-3</td>
</tr>
<tr>
<td>CHAPTER 4. POWER, PITCH ATTITUDE, AND BANK CONTROL THROUGH INSTRUMENTS FOR FIXED AND ROTARY WING AIRCRAFT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section I. General</td>
<td>4-1—4-3</td>
<td>4-1</td>
</tr>
<tr>
<td>II. Power Control</td>
<td>4-4—4-10</td>
<td>4-2</td>
</tr>
<tr>
<td>III. Pitch Attitude Control</td>
<td>4-11—4-18</td>
<td>4-5</td>
</tr>
<tr>
<td>IV. Bank-Attitude Control</td>
<td>4-19—4-26</td>
<td>4-9</td>
</tr>
<tr>
<td>CHAPTER 5. BASIC INSTRUMENT MANEUVERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section I. Fixed Wing</td>
<td>5-1—5-12</td>
<td>5-1</td>
</tr>
<tr>
<td>II. Rotary Wing</td>
<td>5-13—5-29</td>
<td>5-9</td>
</tr>
<tr>
<td>CHAPTER 6. PROFICIENCY MANEUVERS (FIXED WING)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6-1—6-4</td>
<td>6-1</td>
</tr>
</tbody>
</table>

PART TWO. AIR NAVIGATION

CHAPTER 7. GENERAL

<table>
<thead>
<tr>
<th>8. BASIC CONCEPTS OF AIR NAVIGATION</th>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section I. The Earth in Space</td>
<td>8-1—8-4</td>
<td>8-1</td>
</tr>
<tr>
<td>II. Measuring Position on the Earth</td>
<td>8-5—8-11</td>
<td>8-2</td>
</tr>
<tr>
<td>III. Measuring Direction on the Earth</td>
<td>8-12—8-15</td>
<td>8-4</td>
</tr>
<tr>
<td>IV. Measuring Distance on the Earth</td>
<td>8-16, 8-17</td>
<td>8-6</td>
</tr>
</tbody>
</table>

CHAPTER 9. NAVIGATION CHARTS

| Section I. Chart Projections | 9-1—9-9 | 9-1 |
| II. Aeronautical Charts | 9-10—9-14 | 9-6 |

CHAPTER 10. CHART READING, PILOTAGE, AND NAVIGATION FOR TERRAIN FLYING

| Section I. Chart Reading and Pilotage | 10-1—10-9 | 10-1 |
| II. Navigation While Terrain Flying | 10-10—10-18 | 10-4 |

CHAPTER 11. PLOTTING AND MEASURING

12. INSTRUMENTS USED FOR DEAD RECKONING NAVIGATION	Paragraph	Page
13. WIND AND ITS EFFECTS		
14. THE DEAD RECKONING (DR) COMPUTER		
Section I. General	14-1, 14-2	14-1
II. The Slide Rule Face	14-3—14-20	14-1
III. Grid Side of the DR Computer	14-21, 14-22	14-10
IV. Wind Triangles	14-23, 14-24	14-12
V. Wind Problems	14-25—14-30	14-13

* This manual supersedes TM 1-215, 8 September 1964 and TM 1-225, 9 December 1968, including all changes.
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>RADIO PRINCIPLES</th>
<th>VHF OMNIDIRECTIONAL RANGE SYSTEM (VOR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>Components and Operation</td>
<td>16-1—16-5</td>
</tr>
<tr>
<td>II.</td>
<td>Flight Procedures Using the VOR</td>
<td>16-6—16-13</td>
</tr>
<tr>
<td>III.</td>
<td>Receiver Checks</td>
<td>16-14—16-20</td>
</tr>
<tr>
<td>IV.</td>
<td>VOR Station Classification</td>
<td>16-21, 16-22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>ADF AND MANUAL LOOP PROCEDURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>Characteristics and Components</td>
</tr>
<tr>
<td>II.</td>
<td>Automatic Direction Finder Flight Procedures</td>
</tr>
<tr>
<td>III.</td>
<td>Automatic Direction Finder Flight Procedures Using Relative Bearings</td>
</tr>
<tr>
<td>IV.</td>
<td>Manual (Loop) Operation of the ARN-59</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>INTRODUCTION TO INSTRUMENT APPROACH PROCEDURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>Instrument Approaches</td>
</tr>
<tr>
<td>II.</td>
<td>Feeder Routes/Standard Terminal Arrival Routes (STARs)</td>
</tr>
<tr>
<td>III.</td>
<td>Procedure Turns</td>
</tr>
<tr>
<td>IV.</td>
<td>Holding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>VOR AND NDB APPROACHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>Approach Charts</td>
</tr>
<tr>
<td>II.</td>
<td>Typical VOR Approach</td>
</tr>
<tr>
<td>III.</td>
<td>Typical NDB Approach Using ADF Procedures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>INSTRUMENT LANDING SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>General</td>
</tr>
<tr>
<td>II.</td>
<td>Operation and Flight Use</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>RADAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>Air Traffic Control Radar</td>
</tr>
<tr>
<td>II.</td>
<td>Radar Air Traffic Control Procedures</td>
</tr>
<tr>
<td>III.</td>
<td>Transponder Operations</td>
</tr>
<tr>
<td>IV.</td>
<td>Ground Weather Radar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TACTICAL INSTRUMENT FLIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>General</td>
</tr>
<tr>
<td>II.</td>
<td>Tactical Employment Considerations</td>
</tr>
<tr>
<td>III.</td>
<td>Tactical Instrument Flight Planning</td>
</tr>
<tr>
<td>IV.</td>
<td>Training</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPENDIX A</th>
<th>REFERENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.</td>
<td>ATC SHORTHAND SYMBOLS</td>
</tr>
<tr>
<td>C.</td>
<td>IFR FLIGHT PLANNING</td>
</tr>
<tr>
<td>D.</td>
<td>FM HOMING</td>
</tr>
</tbody>
</table>

INDEX | Index-1 |
CHAPTER 22
TACTICAL INSTRUMENT FLIGHT

Section I. GENERAL

22-1. Purpose and Scope
The purpose of this chapter is to provide information for training rotary-wing aviators in tactical instrument flight. Discussed within this chapter are the considerations for employment of tactical instrument flight, procedures for construction of tactical instrument airways and safety zones, and a recommended course of instruction for tactical instrument flight training.

22-2. Prerequisites
This chapter does not address specifics about airspace management, instrument flying, navigational procedures, map reading, and instrument flight techniques. It is understood that the aviator is knowledgeable in these subjects prior to being trained in tactical instrument flight. If, however, additional training is required in these areas of concern, refer to FM 1-60, Airspace Management and Army Air Traffic in the Combat Zone; FM 1-5, Instrument Flying and Navigation for Army Aviators; and FM 21-26, Map Reading. The aviator should be instrument qualified and proficient before undergoing tactical instrument flight training.

22-3. Threat Awareness
a. To perform tactical instrument flight safely, you must have a thorough knowledge of the enemy situation and air defense capability. With this information and a knowledge of where and when a covering force is employed, an enroute course and flight altitude can be planned which may decrease the vulnerability of the aircraft to threat weapons. The degree of vulnerability that remains after applying the procedures contained herein must be taken into consideration before conducting instrument flight in a high threat environment. You must also be aware that a friendly threat exists over the battlefield. Unless the proper identification, friend or foe (radar) (IFF) code and flight corridors are used, there is a danger of being destroyed by friendly air defense weapons.

b. Additionally, you must recognize the enemy's electronic warfare (EW) capability. This threat may be used to degrade the radio signal of the navigational aids or increase the enemy's threat acquisition capability. The success you achieve on the battlefield will be dependent upon how you learn to cope with the enemy threat. You must use every means to avoid, suppress, or destroy the enemy air defense and electronic warfare systems. FM 90-1, Employment of Army Aviation Units in a High Threat Environment, and TC 1-88, Aviator's Recognition Manual are two publications that identify the threat you may encounter on the high threat battlefield.

Section II. TACTICAL EMPLOYMENT CONSIDERATIONS

22-4. Introduction
To provide round-the-clock aviation support, aviation units must be capable of performing tactical instrument flight in areas where terrain flight cannot be performed due to meteorological conditions. Presented within this section is a discussion of the definition of tactical instrument flight, training requirements, and the principles of employment in a high threat environment. A knowledge of this information is essential to insure everyone involved performs their duties in an effective manner.
22-5. What Is Tactical Instrument Flight?

Tactical instrument flight will only be performed when meteorological conditions preclude nap-of-the-earth (NOE) flight.

Tactical instrument flight is defined as "flight under instrument meteorological conditions in an area directly affected by the threat." It is used as a means to complete an assigned mission that is critical in nature when meteorological conditions preclude NOE flight. Tactical situations can be expected which require single-ship operations to be conducted within the threat environment during instrument meteorological conditions. In order to survive during such missions, aviation units must operate under instrument conditions at altitudes well below the altitudes specified in civil instrument flight rules. While standard civil rules may be compatible with threat conditions in rear areas, they will be inadequate for forward areas. Tactical instrument flight provides the means to insure maximum support of ground tactical units by allowing aircraft to move about the battlefield even in adverse weather under high threat conditions. Survivability will require techniques which go beyond the use of today's conventional airways and navigational aids (NAVAID). Sophisticated approach procedures and equipment will not be available. Instead, instrument flight will be performed under marginal conditions requiring the highest level of aviator proficiency rather than equipment. Aircraft will operate routinely at reduced altitudes with minimum navigational aids and minimum air traffic control facilities and regulations. Increased dependence on preflight planning and aircrew proficiency will be essential to accomplish the mission using the tactical instrument mode of flight.

Threat weapons dictate where tactical instrument flight will be performed.

22-6. Training

Tactical instrument flight can be successfully accomplished through diligent and thorough training of aircrews, air traffic management, and pathfinder personnel. Through testing, training, and practice, the capability can become a reality. Tactical instrument flight training not only should familiarize aviators with the principles and employment of tactical instrument flight in the high threat environment, it must teach them to execute an instrument flight and approach into a landing zone (LZ) using minimum electronic communication and navigation devices with confidence. Unit training must be oriented toward accomplishment of the unit's mission under adverse weather and threat conditions with a minimum of assistance from electronic communication and navigation devices. Air traffic management and pathfinder personnel, as well as aircrews, also must be integrated into the training. Units must incorporate tactical instrument functions into their everyday missions. Flying at lower altitudes, minimal use of available navigation and communication equipment, detailed premission planning, and postmission debriefing are training practices that can be used on a routine basis during normal operations. Training must emphasize flexibility in order for aviation elements to be able to respond quickly and reliably in a wide range of adverse weather situations.

22-7. Principles of Employment

Because tactical instrument flight is performed under marginal conditions, greater responsibility is placed upon the aviator for planning and flight-following. When operating under Federal Aviation Administration (FAA) control, you are issued an instrument flight rules (IFR) enroute map. These maps identify the location of navigational aids, headings, and altitudes. Also, the flight-following procedures are identified in Army regulations (AR) and publications. When performing tactical instrument flight, you must determine all this information. The principles listed below must be considered in planning and conducting tactical instrument flight.

a. Threat Avoidance. To minimize the vulnerability of the aircraft to threat weapons, tactical instrument flight can best be accomplished when enemy forces are conducting retrograde operations.
or when friendly covering forces are deployed forward of the forward edge of the battle area (FEBA). The width and depth of a penetration by friendly forces will determine how far forward tactical instrument flight can be performed safely. The distance the covering force is deployed forward of the FEBA will also affect the distance threat weapons can engage aircraft operating in friendly airspace. Normally, antiaircraft artillery weapons cannot engage aircraft along the FEBA when the covering force is deployed; however, detection by the weapons system is possible. The primary threat to aircraft conducting tactical instrument flight in the area along the FEBA will be the air defense missile. To degrade the effectiveness of these weapons, suppression to include radio jamming, artillery fires, and chaff should be used when the mission is being flown.

b. Flight Clearance and Flight-Following Procedures. Whenever tactical instrument flight is planned, you must know the air traffic control procedures to be followed. The procedures to be used will be determined by the area in which the flight is conducted and whether communications can be established with an air traffic control (ATC) facility. The following are examples depicting specific areas and flight-following procedures. The purpose of each procedure is to maintain effective control of the airspace over the battlefield; however, the control measures must not cause delays in mission employment and must not restrict the movement of aircraft about the battlefield.

(1) Rear area to tactical operations area. When flying from a rear area to a tactical operations area, maintain contact with the ATC facility as long as possible and then assume responsibility for making contact with other tactical forward units for flight-following.

Air traffic control procedures are determined by your location on the battlefield.

(2) Tactical operations area to rear area. You serve as your own initial clearance authority and attempt to make contact with ATC elements en route. The flight should follow closely the previously planned and coordinated flight plan.

(3) Flight initiated from unit heliport or airfield.

(a) Clearance for tactical instrument flights is secured from the division Flight Coordination Center (FCC) element through the company operations prior to takeoff if communications exists.

(b) When radio contact is not possible or feasible, contact the ATC elements by landline for flight filing and clearance prior to takeoff.

(4) Flight originating from a tactical site.

(a) In the event tactical instrument flight is required from a forward tactical location, such as a forward area refueling and rearming point (FARRP), and communications cannot be established with an ATC facility, you must serve as your own initial clearance authority.

(b) As soon as practical after the flight is initiated, you should attempt to establish radio contact with an ATC element or a ground tactical unit to relay the flight plan. You should follow the original tactical instrument plan as closely as possible until either direct contact with an ATC element is made or a ground unit relay is established.

(5) Inflight transition from terrain flying to tactical instrument flight. When the tactical mission requires the transition from visual meteorological conditions (VMC) to tactical instrument flight, you must carefully analyze your map to select a route and altitude to provide obstacle and terrain avoidance.

(a) When communication with an ATC element is not possible, you serve as your own clearance authority until direct communication with an ATC element is made or contact with a ground unit relay is effected.

(b) Where communication with an ATC element is possible, report location and intended flight plan. Maintain direct ATC communications as long as possible until flight termination. If enroute communication is lost, follow the reported flight plan.
as closely as possible until contact is regained—either direct or through a relay—or the flight is terminated. If communications with an ATC element cannot be reestablished, flight-follow with a ground tactical unit.

(6) Flight in a severe electronic warfare threat or radio silence environment.

(a) Of necessity, much of tactical flight will be conducted in a severe EW threat environment. To avoid electronic detection in forward areas, NAVAIDs must be restricted to operation only when they are to be used, and then only intermittently. In order to avoid detection and destruction, the electronic signature of navigational aids and aircraft must be kept to a minimum, thereby making radio silence a requisite for mission accomplishment.

(b) You should use landline communications when available for coordinating and clearing tactical instrument flights with an ATC element prior to takeoff. If landline communication is not possible, use secure radio channels. Close initial coordination with the ATC element is essential prior to initiating the flight to eliminate unnecessary radio communications during flight.

(c) During a radio silence environment, voice radio communication for navigation and flight-following is not possible. You must coordinate in detail prior to takeoff, when possible; serve as your own clearance authority during inflight transitions from VMC to tactical instrument flight; and often operate a flight-following facility or unit while en route.

22-8. Flight Altitudes

Flight altitude is determined by the height of terrain obstructions and the availability of terrain for masking.

Flight altitudes will be dictated by the enemy air defense threat. The limits will be *less than those* specified in AR 95-1 and may be as close to the ground as the terrain obstacles permit. Figure 22-1 shows an example of how the air defense threat will appear on the modern battlefield. The illustration graphically shows the relationship of standard instrument flight and tactical instrument flight to

![Figure 22-1. Threat profile.](image-url)
the air defense threat and terrain obstacle clearance considerations. The overriding concern in tactical instrument flight is to remain below the enemy air defense threat and continue to maintain a safe altitude above terrain obstacles in order to complete the mission. You can use standard instrument flight rules (IFR) and procedures in rear areas where the effective range of the enemy air defense missiles and other weapons are not a threat; however, you may be within the range of the enemy early warning and tracking radar. It is important that you are aware that the aircraft is within the radar range even though you are still outside the effective range of the enemy air defense missiles and other weapons. Although you may be beyond the range of ground-based weapons, you may be engaged by enemy aircraft.

a. As you continue to move forward toward the FEB A, you will come within the effective range of the air defense weapons. At this point, you must remain low enough to avoid acquisition by the early warning and tracking radar. In doing so, you must reduce the flight altitude to a level below the enemy threat, yet high enough to provide a safe clearance of terrain obstacles. As you fly toward the FEB A, the capability of the enemy radar to acquire the aircraft will continue to increase even at lower levels. You must continue to adjust the flight altitude and route accordingly to remain below this threat or to be masked by the terrain.

b. Upon reaching the forward area or the destination point, you will use a tactical instrument beacon to make the approach if visual flight conditions are not encountered. If visual conditions are encountered at the destination, or while en route, descend to terrain flight altitude and continue the mission.

c. Conversely, as you fly from a forward location toward the rear of the battlefield, you can progressively increase the flight altitude. A unit's forward or rear boundaries cannot be used as a reliable indication of the altitude to be flown to avoid the enemy air defense threat because these boundaries are highly mobile; are not always the same distance from the FEB; or subject to the same terrain formations. The unit boundaries depicted on figure 22-1 are presented only to show how the threat will increase as the aviator flies nearer the FEBA and is forced to select lower flight altitudes. Each mission requiring the use of tactical instrument flight must be individually planned and an appropriate altitude profile planned to remain clear of both the threat and terrain obstacles.

22-9. Flight Routes

Flight routes will be determined by availability of navigational aids.

The threat, terrain, weather, and availability of radio beacons all affect route selection. Considerations for each factor essential in establishing tactical instrument flight routes include:

a. Straight-line flight between takeoff point and destination will be precluded in many instances by both the terrain and the enemy air defense threat. In selecting the flight route, you must carefully analyze the threat as it affects potential flight routes. In most instances, the threat will be the overriding factor in selecting flight routes. You must make a thorough map reconnaissance of the possible route to the destination and return to determine the best route which will provide threat avoidance and terrain obstacle clearance. In tactical instrument flight, terrain obstacles can serve as valuable assets to deny enemy electronic detection just as they are used for concealment and masking during visual terrain flying in forward areas of the battlefield.

b. The availability and location of navigational aids are significant factors in route selection. Regardless of what the weather condition may be, you should know the location and availability of the NAVAIDs within your area of operation. NAVAIDs in the rear area will be more widely spaced because the radio signal range can be received at a greater range due to the higher altitude the aircraft is flown in this area. NAVAIDs must be placed closer together in the forward areas due to the limited range the radio signal can be received at low altitudes. Route selection in the forward area will be restricted because of the reduced range of the beacons and limited number of beacons. To increase the unit's capability to conduct tactical instrument flight, NAVAIDs must be mobile and highly responsive. Routinely, they must be capable of rapid
displacement on short notice. Air traffic management personnel can expect to move their equipment as frequently as every 4 hours to avoid enemy electronic detection and to prevent repeated use of the same airspace.

c. The enemy will employ highly sophisticated electronic warfare systems. Defeating this capability and protecting aviation assets will require maximum tactical ingenuity and resourcefulness. One of the most effective tactics will be to keep radio communications to the minimum. In selecting a route, communications security and a capability for maintaining communications should be prime considerations. Using terrain to mask the aircraft from possible acquisition by the enemy early warning radar may also mask the aircraft from NAVAIDs and from communications with friendly units. Routes should be selected which provide reliable communications whenever feasible considering also the threat and the terrain.

(1) Approaches. Tactical instrument flight approaches will vary according to the area where the approach is to be performed. In rear areas where standard instrument flight procedures may be followed, ground-controlled approach (GCA) radar can be used for instrument approaches. Approaches in forward battle areas will be limited to using nondirectional beacons. The altitude to which descent can be made will depend on factors such as crew proficiency, aircraft instrumentation, approach NAVAIDs, terrain, and visibility. The ultimate goal of an approach is to allow the aircraft to descend through restrictive weather conditions to an altitude where conditions exist that will permit mission accomplishment. Tactical instrument flight approaches may be classified according to facilities as follows:

(a) Class I—Approach using ground-controlled approach or a derivative of the national microwave landing system with its distance-measuring equipment. Guidance to the ground is reliable with no minimum required for properly trained aviators in appropriately instrumented aircraft and air traffic management (ATM) personnel trained in installation and operation of the equipment.

(b) Class II—Approach using one of the following: An instrument landing system, an area surveillance radar, or a nondirectional beacon. Centerline guidance is reliable with a positive position indication (fix) prior to start of letdown. Descent to 50 feet above ground level (AGL) is allowed for properly trained ATM personnel and aviators using appropriately instrumented helicopters. Visibility must be such that aviators can proceed visually following the approach.

(c) Class III—Approach using frequency-modulated (FM) homer. Reliability of directional guidance and station-passage indication close to station is questionable. Descent altitude is dependent on terrain, and visibility conditions must be such that aviators can operate visually before touching down or continuing the mission. Aviators and ATM personnel must be highly proficient.

(2) Navigational aids. Because of the threat in forward areas of the battlefield, it will not be possible to operate NAVAIDs full time. Operating nondirectional beacons and surveillance radar NAVAIDs full time risks enemy acquisition of both the NAVAID and the aircraft as targets, or of having the enemy disrupt the mission by jamming the NAVAID signal. In rear areas where more sophisticated NAVAIDs can be used along with standard instrument flight rules, efforts should also be made to limit the signal transmission time to only those times when needed as an aid. In the forward battle areas, radio beacons should be operated in the low power mode and turned on intermittently or only upon request. This procedure lessens the chance of enemy detection.

(a) The portable radio beacon set, AN/TRN-30(EX-1)V, is currently used by field units. It transmits a radio signal that can be used in conjunction with the automatic direction finder (ADF) sets AN/ARN-59 and AN/ARN-83 installed in most Army helicopters. The radio beacon set provides an amplitude-modulated (AM) radio frequency signal on any one of 964 channels in the frequency range from 200 kilohertz (kHz) to 535.5 kHz and 1605 kHz to 1750.5 kHz in tunable increments of 500 hertz (Hz). The beacon can be operated in either of three modes—pathfinder, tactical, or semi-fixed. The range of the beacon depends upon the wattage and configuration of its...
operation. The capabilities of the radio beacon for each mode of operation are shown below.

<table>
<thead>
<tr>
<th>Frequency Range (km) Below 500 ft AHO</th>
<th>Pathfinder Mode (V1) 200-635.5 kHz</th>
<th>Tactical Mode (V2) 200-535 kHz</th>
<th>Sem-Fixed Mode 200-535 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range (km) Above 500 ft AHO</td>
<td>15 km</td>
<td>w/15 ft Mast Antenna</td>
<td>25 km</td>
</tr>
<tr>
<td>Power Output</td>
<td>25 W</td>
<td>180 W</td>
<td>60 W</td>
</tr>
<tr>
<td>Weight</td>
<td>39 lbs</td>
<td>175 lbs</td>
<td>672</td>
</tr>
<tr>
<td>Channels</td>
<td>964</td>
<td>672</td>
<td>672</td>
</tr>
<tr>
<td>Power Source</td>
<td>6V Battery</td>
<td>6V Battery</td>
<td>6V Battery</td>
</tr>
<tr>
<td></td>
<td>or Jeep Battery</td>
<td>(26V)</td>
<td>(26V)</td>
</tr>
</tbody>
</table>

(b) FM homing can be used for short distances as an emergency tactical instrument navigational aid when the onboard ADF equipment malfunctions or the ground-based nondirectional beacon becomes unreliable or inoperative. FM homing should be used only as backup NAVAID to return the aircraft to VFR conditions or to a rear area.

(c) Tactical instrument flight at night is conducted primarily in the same manner as it is conducted in the day. However, during transition from tactical instrument flight to visual flight at the point of letdown, a light source must be present to provide a visual reference point landing. The lighted “T”, “Y”, or reference symbol may be used. If the landing site is located at a location other than the letdown point, a second light source to assist in landing is also necessary.

Section III. TACTICAL INSTRUMENT FLIGHT PLANNING

22-10. Introduction

The situation requiring an aviation support mission to be flown using tactical instrument procedures will be the most demanding you can imagine. To perform this mission while minimizing the exposure of the aircraft to threat weapons and avoidance of terrain features and obstacles, you must plan the mission in great detail and your flight maneuvers must be very precise. This section discusses the planning considerations and explains the procedures for determining the minimum enroute altitude (MEA); the takeoff and climb requirements; the tactical instrument approach; the holding pattern; missed approach procedures; and emergency procedures for tactical instrument flight.

22-11. Preflight Planning

Prior to actual weather conditions requiring tactical instrument flight, you should have completed a portion of the preflight planning procedure. You may not know where the mission is to be flown; however, tactical instrument preplanned routes within the division forward area can be established based on the known location of the radio beacons. When the actual mission is received an additional leg(s) can be added to the preplanned route. By developing preplanned routes, the time required to complete the preflight planning is reduced and less time is required to respond to a mission request.

a. Because the electronic emission of the radio beacons can be easily located by the enemy, they will operate at specified times or as needed and will be frequently relocated. Each time they are moved, you should construct new tactical instrument preplanned routes.

b. There is no existing document that provides information as to the location, frequency, or date-time group for relocation of the radio beacon. It is proposed that this information be contained in the "Communications-Electronic Operation Instructions" (CEOI).
c. Although it is the responsibility of the aviator to compute the information required for tactical instrument flight, flight operations personnel should routinely develop tactical instrument preplanned maps. These maps should be available to the aviator upon receipt of an aviation support mission.

d. When planning for a mission requiring tactical instrument flight, you should follow a checklist to insure completeness. The following factors are essential preflight planning considerations:

(1) **Mission requirements.** When the mission to conduct a tactical instrument flight is received you can finalize the premission planning that has already been performed. The following factors should be identified in the mission request:

 (a) **What.** The nature of the aviation support mission; e.g., medical evacuation, resupply, must be identified. Also, the number or weight of material to be transported must be known.

 (b) **Where.** The location of the pickup and drop-off point must be identified. This information is required to determine the enroute course to the drop-off point and to compute the enroute time and fuel requirement.

 (c) **When.** Once it is known when the mission is to be performed, you can use the backward planning sequence to determine the takeoff time and when navigational aids should be turned on.

 (d) **Who.** The unit being supported must be known. Coordination is required to insure the success of the mission.

(2) **Enemy situation.** You should know the location of friendly and enemy forces and their posture. To gain this information, study the unit's tactical map or contact the supported unit for detailed information concerning the tactical situation.

(3) **Air defense weapons.** It is important that the unit operations personnel obtain all available information which identifies the location of enemy air defense weapons. These locations should be plotted on the tactical situation map for review by the aircrews. Intelligence information on the enemy's tactical air capability must also be made available. Based on the threat and route of flight, consideration should be given to requesting suppression of threat weapons.

(4) **Weather.** An indepth weather briefing is desirable in determining mission feasibility. Enroute weather and destination weather at all intended points of landing should be acquired. Pilot reports (PIREP) are helpful when available. The US Air Force weather service provides a valuable source of weather information, especially in forecasting area trends and changes. Whenever possible, contact should be attempted with destination units to further enhance the accuracy of overall weather factors for the proposed mission.

(5) **Communications.** The frequencies and call signs of the supported unit, air traffic control (ATC) facility and artillery units must be known. A current CEOI should be available and you must be knowledgeable concerning its use.

(6) **Navigational aids (NAVAID).** You must know the location of the radio beacon, its frequency and when and where it will be relocated. Other information includes the frequency-modulated (FM) radio frequency of the pathfinder operating the beacon and any known dead spots created by terrain features.

(7) **Special equipment.** The mission to be performed will dictate what special equipment will be carried aboard the aircraft; e.g., litter, tiedowns, night vision goggles. Survival equipment for the type of environment should be carried aboard the aircraft.

22-12. Determining the Course Line

As information pertaining to the location of NAVAIDs and the supported units become available, you should plot it on your tactical map. An analysis of this information will allow you to select a
route to your destination that will minimize the vulnerability of the aircraft to threat weapons and obstructions. Ideally, you would select a route that would mask the aircraft from threat weapons; however, the terrain features that mask the aircraft may require the minimum enroute altitude be so high that the aircraft can be detected by electronic devices. To insure that all factors are considered when selecting the tactical airway, the following guidelines are provided:

Correction for wind drift must be computed to insure accurate navigation.

a. A factor in route following is the availability of radio beacons and where they are positioned. In some situations, there may be only one beacon available. Because the reliable reception distance of the beacon signal is approximately 15 kilometers (km), it may be necessary to use dead-reckoning navigation during some portion of the route (fig 22-2). Even when two or more radio beacons are available, they may be so far apart that a segment of the route must be conducted using dead-reckoning (fig 22-2). To avoid the danger of exceeding the limits of the safety zone, the dead-reckoning segment of the route should not exceed 15 km. Using this criteria, it would be possible to navigate 60 km using one radio beacon before receiving the signal from a second beacon along the course line (No. 1, fig 22-2). If the beacon is located at the beginning or end of the enroute course, the maximum safe distance you could navigate using dead-reckoning and radio navigation would be 30 km (No. 2, fig 22-2). Before final selection of the tactical airway is made, you must study the terrain within the enroute safety zone to determine the minimum enroute altitude. After determining the minimum enroute altitude for each leg of the route, you may find the MEA subjects the aircraft to detection by threat weapons. To avoid this danger, you should select another route that would permit the aircraft to be flown at a lower MEA. After it has been determined that the selected route provides the best protection from threat weapons and terrain obstacles, you should measure the azimuth and distance of each leg. Remember, the grid azimuth of each leg must be converted to magnetic azimuth. Also, when conducting dead-reckoning navigation, correction for wind drift and instrument error must be applied to insure accurate navigation.

Grid azimuth must be converted to magnetic azimuth.

b. After determining the magnetic course and distance of each leg, draw on a plain sheet of paper a tactical instrument map depicting the route that has been selected. The exact scale of the map is not

![Figure 22-2. Enroute navigation.](image-url)
critical. The distance of each leg—measured in kilometers—and magnetic course should be recorded on the map (fig 22-3). If a portion of the leg is conducted using dead-reckoning navigation, mark the point where radio reception can be anticipated. Because the enroute altitude is normally below 1,000 above ground level (AGL), surface winds should be used for computing enroute time and wind correction. This information should be recorded on your instrument flight log (fig 22-4). If the leg is flown using both radio and dead-reckoning navigation, compute the time for each portion of the leg separately. After completing your preflight planning, you can add the minimum enroute altitude for each leg of the route.

22-13. Determining Minimum Enroute Altitude

Due to the low altitude you will be flying when conducting tactical instrument flight, it is essential that you perform a thorough map analysis to determine the highest obstacle within the safety zone bordering the course line. Failure to recognize the highest obstruction could result in the aircraft being flown at an altitude below an obstruction within the enroute safety zone, thus creating an unsafe condition of flight. In addition to the information contained on the map, you should consider any PIREPs of manmade features that have been constructed since the map was printed. Although obstruction clearance is of primary concern, consideration must also be given to avoiding detection by enemy electronic devices. You may find that if the aircraft is flown at the MEA it would be detected by threat weapons. When this condition exists, you should select another route where the MEA is lower. Always remember to fly at the lowest minimum enroute altitude possible. This means that each leg of the route may be flown at a different altitude. The following procedures describe the method for determining the minimum enroute altitude.

a. The MEA for each leg of a tactical instrument airway may be different. To determine the MEA for...
each leg of the route, you must consider one or more of the following safety zones: The takeoff, the enroute, or the approach. For example, the MEA for the first leg is determined by the highest obstructions within the takeoff safety zone and the enroute safety zone (fig 22-5). If the route has three or more legs, the MEA for the leg(s) other than the takeoff and landing leg, is determined by the highest obstacle within the enroute safety zone (fig 22-5). The MEA for the final leg is determined by the highest obstacle within the enroute safety zone and the approach safety zone. For the purpose of the discussion within this paragraph, it will be assumed that the highest obstacle within the takeoff and approach safety zone is lower than the enroute safety zone.

b. The method of navigation that is used to maneuver the aircraft along the tactical airway—radio navigation or dead-reckoning navigation—will determine the procedure for computing the width of the safety zone. The following criteria will be used for determining the safety zone for each type of navigation.

(1) Radio navigation—within 15 km of a radio beacon. The width of the safety zone shall be 1 kilometer each side of the centerline.

Example: The tactical situation requires that you perform an aviation support mission during instrument meteorological conditions (IMC). The route consists of two legs fixed by three radio beacons. Radio navigation is possible for the entire route. To determine the safety zone for each leg, construct boundary lines 1 km on each side of the course line (fig 22-6).
(2) Dead-reckoning navigation—not to exceed 30 km beyond the radio beacon. The width of the safety zone shall be one-fifth the length of the course leg. If a fraction of a kilometer results, round up to a whole kilometer (fig 22-7).

Example: The tactical situation requires that you perform an aviation support mission during IMC. The route requires that the initial portion of the flight be flown using dead-reckoning navigation. To determine the safe zone for this portion of the leg, you must first measure the total distance of the leg (30 km). The width of the safety zone is one-fifth the total distance of the leg or 6 km. Draw the boundary line 3 km on each side of the centerline for that portion of the leg flown using dead-reckoning navigation.

22-14. Radio and Dead-Reckoning Navigation

When the course leg is flown using both radio navigation and dead-reckoning navigation, the dead-reckoning rule applies; however, the radio navigation rule changes. To determine the width of the safety zone for the portion flown using radio navigation, a line is drawn from the boundary of dead-reckoning safety zone to boundary of the radio navigation safety zone at the radio beacon.

b. After determining the boundary of the safety zone for each leg of the route, you should construct the boundary for the takeoff and landing safety zone. The procedure for determining the takeoff and landing safety zone will be discussed in the following paragraphs. For the purpose of this discussion, the assumption will be made that the highest obstruction is located within the enroute safety zones. Study
the area within the safety zone and identify the altitude of the highest terrain or obstruction. Once the highest altitude is located, add 400 feet. This altitude is the recommended MEA for tactical instrument flight.

Note. The recommended safe minimum clearance altitude of 400 feet above the highest obstacle (AHO) incorporates a safety margin for the variables of altimeter error, pilot error, obstacle elevations, and height of vegetation not depicted on tactical maps. At 200 feet AHO, the lowest beacon reliable reception altitude, the safety margin for the variables is not adequate. Altimeter error, variation in obstacle elevation, and heights of vegetation may be greater than 100 feet. Flights at 300 feet AHO would be satisfactory without considering potential pilot error. To allow for pilot error, an additional 100 feet is added as a safety margin—making the recommended safe minimum clearance altitude 400 feet AHO. Depending on the type of terrain—flat desert, broken woodlands, or mountainous—the safe minimum clearance altitude for flight planning purposes can and should be adjusted commensurate with the threat and terrain. For example, the safety margin can be reduced over flat desert terrain since vegetation or manmade obstacles are usually absent; in mountainous terrain, the margin may need to be increased to provide for downdrafts and unexpectedly high terrain obstacles.

Example (fig 22-9): The tactical situation requires that you perform an aviation support mission during tactical instrument flight conditions. After constructing the safety zones for each leg of the route and the takeoff and landing safety zone, you identify the altitude of the highest obstruction on the first leg to be 450 feet, 320 feet for the second leg, and 500 feet for the third leg. The MEA for the first leg is determined to be 850 feet AGL, 720 feet AGL for the second leg, and 900 feet AGL for the third leg (fig 22-9).

Note. Obstructions shown on the map identify the height of the obstruction above the ground. To determine the altitude of the obstruction, you must add the height of obstruction to the terrain elevation.
Cl. FM 1-5

LEG 1

HIGHEST OBSTACLE 450
SAFETY MARGIN 400
MEA 850

LEG 2

HIGHEST OBSTACLE 320
SAFETY MARGIN 400
MEA 720

LEG 3

HIGHEST OBSTACLE 500
SAFETY MARGIN 400
MEA 900

Figure 22-9. The highest obstruction for each leg of the route determines the MEA for that leg.

22-15. Takeoff Planning

Planning for the takeoff should include all the factors for a normal visual flight rules (VFR) takeoff; e.g., wind direction and velocity, longest axis of the area, barriers on the takeoff path, and power requirements. In addition, since the takeoff may be in actual weather conditions, you must evaluate the terrain within the takeoff safety zone to insure the climb performance of the aircraft will allow you to climb to an altitude above the obstacle before reaching it. When possible, the takeoff direction should be planned to be on or near the heading of the first leg of the course. Because this cannot always be accomplished, procedures have been established which will allow you to maneuver the aircraft safely to the desired course. If there is a navigational aid at the takeoff point, standard tracking procedures can be used to establish the aircraft on the desired course. Where the first leg of the route is flown using dead-reckoning navigation, the following departure procedures are recommended.

a. When the takeoff heading is within 90 degrees of the enroute course, make a direct turn to the enroute course heading after reaching an altitude 100 feet above the highest obstruction within the takeoff safety zone (fig 22-10).

b. When the takeoff heading is more than 90 degrees from the enroute course heading, a teardrop turn is used to reverse direction and establish the course heading. After reaching an altitude 100 feet AHO within the takeoff safety zone, execute a 210-degree turn (fig 22-10). The turn should be made in the direction of the lowest terrain obstacles. Where terrain obstacles are not a consideration, the turn should be made into the wind. After completing the turn, fly the heading the same length of time as the takeoff heading was flown. After this period of time elapses, turn to the heading which will allow you to make good the desired course.

c. When executing any of the takeoff maneuvers, you should maintain maximum climb performance using an airspeed of 60 knots until 100 feet AHO in the takeoff safety zone. The high rate of climb and slow airspeed is necessary to gain altitude in a short distance.

d. Before constructing the takeoff safety zone, you must determine if a safe takeoff can be made on the selected heading. To determine this information, you must construct a takeoff climb zone 30 degrees wide (15 degrees either side of the takeoff heading) measured from the point of takeoff (fig 22-11). Identify the altitude of the highest terrain features or obstacles within the climb zone and the distance it is from the takeoff point out to a distance of 3
kilometers. Using the takeoff obstruction chart (fig 22-12), you can determine the rate of climb required to clear any obstacle within the climb zone. Example: It is determined that there are two obstacles within the climb zone.

e. By constructing a takeoff obstruction chart, you can determine the climb rate required to clear the obstacles. In the following example, it is determined from the chart that a climb rate of 400 feet (fpm) is required to clear the obstacle. If you
know the aircraft is capable of a climb rate greater than 400 fpm, a safe takeoff can be made on the selected heading.

Knowing that a safe takeoff can be made, you must now determine the altitude you must climb to before turning from the takeoff heading. This information is determined by constructing a takeoff safety zone. It is applicable for takeoffs that are greater or less than 90 degrees from the enroute course using radio or dead-reckoning navigation. The procedures for constructing and using the takeoff safety zone are:

1. Construct a box 1 x 3 kilometers with the line dividing the maneuvering and nonmaneuvering sides of the safety zone alined on the takeoff heading (fig 22-13). The origin of this line is at the takeoff point. The 3 x 3 kilometer box of the takeoff safety zone will always be located on the turning side.

2. Determine the highest terrain feature or obstacle above the takeoff point within the takeoff safety zone. This altitude plus 100 feet is the altitude you must climb to before turning to intercept the enroute course.

3. Locate the altitude of the highest terrain feature or obstacle within the takeoff safety zone and the safety zone for the first enroute leg. Add 400 feet to the highest obstruction within two safety zones. This is the minimum enroute altitude for the first leg of the route, and the aircraft must be flown to this altitude while turning to intercept the enroute heading.

4. The MEA for succeeding legs of the route may be different. To minimize detection of the aircraft, you should fly at the lowest altitude rather than select the highest MEA; and fly the entire route at one altitude. If the succeeding leg of the course is higher, plan your climb so as to cross the radio beacon at the highest MEA. If the altitude is lower, descend to the MEA after passing the radio beacon.
(5) The altitude you must maintain on takeoff before turning should be noted on your instrument flight log.

Note. If the takeoff heading is aligned with the enroute course, a takeoff safety zone is not required. The width of the enroute safety zone provides adequate obstruction clearance for the climb zone.
22-16. Approach Procedures

The tactical instrument approach incorporates the normal flight procedures used for the standard instrument approach; however, the minimum descent altitude for the tactical approach is lower. There are two types of tactical approaches—the terminal approach and the straight-in approach. The flight maneuvers and procedures for constructing the approach safety zone for the tactical approach are:

a. Terminal Approach. The radio beacon used for the terminal approach is located at the landing point. There is no final fix where the descent is initiated. The standard 1-minute racetrack pattern is used to maneuver the aircraft into position for the descent (fig 22-14). Because there is limited space within the approach safety zone, the aircraft should be flown at 60 K airspeed. Reduction in airspeed should be made upon arrival at the beacon. Also, the aircraft must be flown to the minimum maneuver altitude within the approach safety zone (400 feet above the highest obstruction within the approach safety zone) prior to initiating the approach. If the MEA is higher than the minimum maneuver altitude, descend to the lower altitude in the pattern. Upon intercepting the approach heading, begin descent so as to arrive at the minimum descent altitude (MDA) prior to reaching the beacon. Maintain track and MDA until station passage.

The approach safety zone for the terminal approach provides a safe maneuvering area for entering the racetrack pattern, holding and missed approach. The procedures for constructing the approach safety zone are:

1) The lateral boundaries of the approach safety zone are 3 kilometers on the maneuvering side.
and 1 kilometer on the nonmaneuvering side (fig 22-15). The linear boundaries extend 3 kilometers on each side of the beacon. The maneuvering side should be located on the side where the terrain is the lowest. Where terrain is not a factor, it should be positioned on the upwind side.

(2) Study the area within the approach safety zone and locate the highest obstruction. The MDA is derived by adding 200 feet to the altitude of the highest obstruction. As discussed previously, the MEA for the final leg of the course may be determined by the highest obstruction within the approach safety zone.

(3) A diagram of the approach should be drawn to provide a visualization of the maneuvers to be performed during the execution of the approach.

Example (fig 22-16):
Altitude of highest obstruction within the approach safety zone 400 feet (MSL)
Minimum enroute altitude . . 1,000 feet (MSL)
Minimum maneuver altitude within approach safety zone 800 feet (MSL)
Minimum descent altitude 600 feet (MSL)

Sequence 1—Decrease airspeed to 60 K upon crossing the radio beacon. After passing the beacon, turn to parallel the outbound heading (270 degrees) and begin descent to the minimum maneuver altitude within the approach safety zone.
Sequence II—After 1-minute outbound, turn to the inbound heading. If the descent to the minimum maneuver altitude for the approach safety zone (800) is completed prior to intercepting the final approach course, continue the approach inbound to the landing point. If additional time is required for the descent, fly the pattern until reaching the minimum maneuver altitude. Upon intercepting the final course inbound, begin descent to MDA.

Sequence III—If at any time on the approach visual contact is made with the ground, transition to VFR flight. If visual contact is not possible, execute missed approach procedures upon station passage. Missed approach procedures are discussed in the paragraph entitled “Missed Approach Procedures.”

b. Straight-In Approach. To perform a straight-in approach, you must be able to identify a point along the enroute course where the approach begins. This point may be identified by an intersection formed by the two magnetic bearings or by passing over an enroute nondirectional beacon (fig 22-17). Normally, there is sufficient distance between the final fix and the landing point to permit a standard rate of descent from the enroute altitude to MDA prior to reaching the landing point; however, when necessary, you may enter holding on the inbound course to the fix and descend to the minimum maneuver altitude within the approach safety zone. A reduction in airspeed to 60 K should be made upon arrival at the fix. Upon passing the fix, descend to MDA and track on the inbound course.

(1) When using a radio beacon or the intersection of magnetic bearings as the final fix, the following factors must be considered:

(a) Determine the location along the course where reliable intersection identification can be established. Terrain obstructions will limit the range and altitude at which a reliable signal can be received.

(b) The secondary radio beacon should be no more than 10 km from the intersection. This restriction is necessary to insure accurate intersection identification.

Figure 22-17. Straight-in approach.
(c) Locate the intersection so the magnetic
bearings forming the intersection are as close to 90
degrees as possible.

(d) The landing point should be no less than
2 km and no more than 8 km from the final fix.

(2) The approach safety zone for the straight-in
approach provides a safe maneuvering area for
holding, the approach, and missed approach. The
lateral boundaries are 3 kilometers on the maneuver-
ning side and 1 kilometer on the nonmaneuvering side
(fig 22-18). The linear boundaries will vary
depending on the distance the intersection is from
the landing point. Regardless of what this distance
may be, the safety zone will extend 3 km in front of
the intersection to a point 3 km beyond the landing
point. The guidelines for the construction of the
approach safety zone are applicable both when the
approach leg is aligned with the enroute course or
when offset from the enroute course.

(3) Study the area within the approach safety
zone and locate the highest obstruction. Add 200 feet
to the highest obstacle within the safety zone to
determine the MDA. Also determine the minimum
maneuver altitude within the approach safety zone
by adding 400 to the highest obstruction. As
previously discussed, this altitude may determine
the MEA for the final leg of the route. If the
minimum maneuver altitude for the approach safety
zone is lower than the MEA, you can descend to this
altitude while in the holding pattern.

(4) Measure the distance from the final ap-
proach fix to the landing point and compute the time
required to travel this distance at 60 K airspeed. It
may be necessary to enter holding if a high rate of
descent is required to descend to MEA from a
straight-in approach. Missed approach procedures
will be executed when the time inbound from the fix
elapses.

<table>
<thead>
<tr>
<th>Airspeed</th>
<th>Distance</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>3 km</td>
<td>2:08</td>
</tr>
</tbody>
</table>

(5) A diagram of the approach should be drawn
to provide a visualization of the maneuvers to be
performed during the execution of the approach.

Figure 22-18. Approach safety zone (straight-in approach).
Example (fig 22-19):
Minimum enroute altitude 1,000
Minimum maneuver altitude within the approach safety zone 800
Minimum descent altitude 400
Time to landing point 2:08

Sequence I—Decrease airspeed to 60 K upon crossing the final fix. After passing the fix, begin the descent and align the aircraft on the inbound course. In this example, entry into the holding pattern is not necessary because the minimum rate of descent required to arrive at the MDA before reaching the landing point can be achieved.

Sequence II—Continue to track inbound and descend to MEA. If at any time on the approach visual contact is made with the ground, transition to VFR flight. If visual contact is not possible, execute missed approach when the inbound time has elapsed.

22-17. Holding Procedures

a. Upon arrival at your destination, you may have to enter holding due to the tactical situation, or to let down to a lower altitude before executing the approach. The time flown in the holding pattern must be minimized to avoid detection and engagement by threat weapons. Entry into holding is simplified because you will always hold on the enroute course. The decision whether to make left or right turns is optional; however, the direction of turn should be determined while on the ground during your preflight planning. Ideally, the holding pattern
will be flown over the lowest terrain obstruction and on the upwind side of the course line.

b. The holding pattern is limited to the standard 1-minute inbound leg. Airspeed while in the holding pattern is 60 K. The approach safety zone includes a safe area for holding and is planned for in every approach. Holding should be conducted at the minimum maneuver altitude within the safety zone—400 feet AGL.

Example (fig 22-20):
Minimum enroute altitude
(MEA) 1,000 MSL
Minimum maneuver altitude within
the approach safety zone 800 MSL
Minimum descent altitude 400 MSL

Sequence I—Decrease airspeed to 60 K upon crossing the fix. After passing the fix, turn outbound to a heading of 270 degrees. Direction of turn should be toward the maneuvering side as determined in your preflight planning. Begin descent to minimum maneuver altitude (800 feet) after passing the fix.

Sequence II—Note time abeam the fix and fly outbound sufficient time to achieve a 1-minute inbound leg. Apply wind correction, as necessary, both outbound and inbound. Continue flight with holding pattern as required.

Figure 22-20. Holding pattern.
22-18. Missed Approach Procedures

a. Weather conditions or the enemy situation may not allow you to land at your destination after initiating the approach. When either of these conditions exists, you must execute a missed approach. The requirement to perform a missed approach must be anticipated for every tactical instrument flight. To insure obstruction clearance for the missed approach, a safe maneuver area is provided for in the approach safety zone. The maneuver for the missed approach is basically the same for both the terminal approach and the straight-in approach. It consists of a climbing left turn or right turn to intercept the enroute course or return to the radio beacon. If the missed approach procedure is to intercept the enroute course, use a 45-degree or more intercept heading.

b. During the preflight planning, you must determine the direction of turn. Normally, it is on the same side the holding pattern is flown; however, you are not restricted to this procedure. The location of highest terrain obstructions and wind direction will dictate the direction of turn.

c. A diagram of the planned missed approach should be drawn to provide a visualization of the maneuver to be performed during the execution of the missed approach.

Figure 22-21. Missed approach procedure.
Example (fig 22-21):

Minimum descent altitude 600 MSL
Minimum maneuvering altitude 800 MSL
Minimum enroute altitude 1,000 MSL

Sequence I—Upon reaching the position where the missed approach must be executed, immediately initiate a climbing turn. Continue the turn until on a direct course to the radio beacon or on an intercept heading to the enroute course. The climb should be expedited to the minimum enroute altitude. An airspeed of 60 K should be maintained during the climb.

Sequence II—Radio contact should be established with the Flight Coordination Center (FCC) to advise of your intentions. If contact cannot be made, contact the ground unit to relay your request to the air traffic control (ATC) personnel.

22-19. Emergency Procedures

The emergencies that you may experience while conducting tactical instrument flight will vary. The best procedures to cope with the emergency will be determined by the conditions that exist at the time of the emergency. Good judgment and positive action is essential to insure survival of the aircraft and aircrew. Although not complete, the following are emergency conditions that might be experienced. Also presented are recommended actions.

a. Air Defense Emergency Procedures. Even though the enemy cannot visually acquire and engage your aircraft when conducting instrument flight in the clouds, electronic devices have this capability. The route you fly should minimize vulnerability to enemy threat weapons; however, while en route your AN/APR-39 radar detector may activate, indicating the aircraft is being tracked by enemy radar. Unless immediate action is taken to reduce altitude you will soon be engaged. To descend below the minimum enroute altitude is dangerous; however, you must break electronic line-of-sight by descending. To minimize the danger involved, you should decelerate the aircraft to the minimum controllable forward airspeed. Simultaneously, initiate a descent. At a specific altitude, you will lose radar line-of-sight. Descent below this altitude is not required unless you have flown into VFR conditions. If you are still in the clouds, you must decide whether to continue to your destination or reverse course. Primary factors that you must consider are:

(1) What are the weather conditions?
(2) What is your altitude above the highest obstruction?
(3) In which direction are the lowest obstructions located?
(4) Is the landing point or takeoff point closer?
(5) Are there suppressive countermeasures available to degrade the enemy threat weapons?
(6) Is there any battle damage to the aircraft? If so, what effect does it have on continued flight?

b. Loss of Radio Navigational Aids. While en route to the landing point, you may experience a loss of signal from the radio beacon. Each situation of this nature requires good judgment. General guidance that may be followed is:

(1) If the radio beacon fails when your position is within 15 kilometers of the beacon, reduce airspeed to 60 knots and continue on the route for 2 minutes. If the signal is not received within this period of time, reverse course and use dead-reckoning navigation, as required, to return to the takeoff point.

(2) If the radio beacon fails when you are beyond the effective range of the radio beacon, you will not know immediately that it has failed. If no audio signal is received upon reaching the time where the radio signal should be received, execute a course reversal.

(3) If the radio beacon fails during the approach, continue the approach to the MDA, but do not continue inbound after reaching the MDA unless visual contact is made with the ground.

(4) If the radio beacon fails while holding, do not initiate the approach; instead, turn to the enroute heading and return to the takeoff point.
(5) If in close proximity to the landing point and ground personnel can identify your position by sound, use ground personnel to talk you down.

(6) If radio contact can be established with the pathfinder at the beacon, FM homing can be used as an emergency means of navigation.

c. Aircraft Deficiency. Any number of aircraft emergencies may occur during a tactical instrument flight. These emergencies can be categorized as land immediately, land as soon as possible, land within a specified time. The first two emergencies are simple go or no-go indications of flight. The third condition must be evaluated to determine if you should continue or abort the mission. Factors that must be evaluated to determine what emergency action should be taken are:

(1) Have you reached the point of no return where it would be closer to continue on to the intended point of landing?

(2) Can a safe landing be made at the landing point based on the emergency, the nature of the landing area, the load and the enemy situation?

(3) If the emergency requires you to perform a full stop landing from the approach, even if visual conditions cannot be established, slow the aircraft to minimum controllable airspeed and descend at a slow rate. If visual contact is not established at MEA, continue the descent until visual contact with the ground.

(4) Can a takeoff be made after landing? Due to the nature of the emergency, a safe takeoff may not be possible; however, flight to the takeoff point can be accomplished.

(5) How critical is the mission? It may be more important to get the cargo to its destination and let the aircraft remain on the ground.

Section IV. TRAINING

22–20. Introduction

a. Units qualifying aviators in tactical instrument flight are responsible for conducting a well-organized training program. The course of instruction must instill confidence within the student that tactical instrument flight can be performed safely in a high threat environment and at low altitudes. The student undergoing this training should be qualified and proficient in instrument flight. Before conducting the flight portion of the training, the student should demonstrate a knowledge of the preflight training that is required for instrument flight. Teamwork between the pilot and copilot is essential. Whereas 50 feet to 100 feet above or below the assigned altitude is not critical for normal instrument flight, it is very serious when conducting tactical instrument flight. Advisory by the copilot when the aircraft is being flown off-course or altitude is essential for maintaining precise positioning of the aircraft. Regulations prohibit the employment of Army aircraft in actual weather using tactical instrument flight during a peacetime environment. All tactical instrument flight training must be simulated and conducted during visual flight rules (VFR) conditions.

b. To acquire the proficiency that is required to conduct tactical instrument flight, the training must be continuous. Command emphasis is essential to insure that the aviators assigned to the unit achieve and maintain the required proficiency to conduct tactical instrument flight in an actual combat environment. Where possible, the synthetic flight training simulators (SFTS), in conjunction with actual inflight training, should be used to obtain and maintain the required degree of proficiency.

A recommended course of instruction for qualifying aviators for tactical instrument flight is provided.
Flight Training for Tactical Instrument Flight

<table>
<thead>
<tr>
<th>TASK</th>
<th>CONDITION</th>
<th>TYPE INSTRUCTION</th>
<th>REFERENCES</th>
<th>TRAINING/EVALUATION STANDARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify the prerequisite for conducting tactical instrument flight.</td>
<td>Classroom</td>
<td>Conference</td>
<td>AR 95-1, FM 1-5, FM 1-5, C1, FM 1-60, TERPs</td>
<td>The student must demonstrate a knowledge of Instrument flight procedures, regulations, and flight techniques.</td>
</tr>
<tr>
<td>Identify the threat and how it affects tactical instrument flight.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1, FM 1-60, FM 90-1, TC 1-88</td>
<td>The student must demonstrate a knowledge of threat weapons and their capabilities. The student must also know the planning requirements that will avoid or minimize detection of the aircraft by threat weapons systems.</td>
</tr>
<tr>
<td>Identify the condition during which tactical instrument flight will be conducted.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate a knowledge of the meteorological conditions that require the use of tactical instrument flight.</td>
</tr>
<tr>
<td>Identify the principles of employment for instrument flight in the combat zone.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1, FM 1-60, FM 90-1</td>
<td>The student must demonstrate a knowledge of the different flight altitudes that will be flown within the different areas of the combat zone, the NAVAIDs available, classes of approaches, and the control procedures to be followed.</td>
</tr>
<tr>
<td>Identify the factors that must be considered when planning a tactical instrument flight.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, FM 1-5, C1</td>
<td>The student must demonstrate a knowledge of the factors that are required for initial planning of a tactical instrument flight. This includes the mission requirements; e.g., what, where, when, and who, the enemy situation, the location of their defense weapons, the weather condition, communications, navigational aids, and special equipment.</td>
</tr>
<tr>
<td>TASK</td>
<td>CONDITION</td>
<td>TYPE</td>
<td>REFERENCES</td>
<td>TRAINING/EVALUATION STANDARDS</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------</td>
<td>------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Describe the two types of navigation used for tactical navigation.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5</td>
<td>The student must demonstrate a knowledge of the capabilities and limitations for both dead-reckoning and radio navigation as relates to tactical instrument flight planning.</td>
</tr>
<tr>
<td>Describe the procedure for determining the enroute course.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate knowledge of the capabilities of the radio beacon, conversion of grid azimuth to magnetic azimuth, and measurement of distances in kilometers.</td>
</tr>
<tr>
<td>Describe the procedures for construction of the enroute safety zone.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, FM 1-5, C1</td>
<td>The student must demonstrate knowledge of how to construct an enroute safety zone for dead-reckoning navigation, radio navigation or a combination of dead-reckoning and radio navigation.</td>
</tr>
<tr>
<td>Describe the procedures for determining the minimum enroute altitude (MEA).</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate knowledge of how to analyze the area within the enroute safety zone to determine the highest obstruction. After identifying the highest obstacle, the student must determine the minimum enroute altitude for each leg of the route.</td>
</tr>
<tr>
<td>Describe the procedure for intercepting the enroute course after takeoff.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate knowledge of how to intercept the enroute course when the takeoff heading is less than or greater than 90 degrees from the enroute course.</td>
</tr>
<tr>
<td>TASK</td>
<td>CONDITION</td>
<td>TYPE INSTRUCTION</td>
<td>REFERENCES</td>
<td>TRAINING/EVALUATION STANDARDS</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>Describe the procedure for determining the takeoff climb zone.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate a knowledge of how to construct the takeoff climb zone, analyze the area within the zone for the highest obstruction, and determine when the turn to intercept the enroute course can be made.</td>
</tr>
<tr>
<td>Describe the procedures for determining the takeoff safety zone.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate a knowledge of the dimensions and orientation of the takeoff safety zone, how to analyze the area within the takeoff safety zone to determine the highest obstruction, and how to determine the MEA for the first leg of the route.</td>
</tr>
<tr>
<td>Describe the procedures for determining required rate of climb on takeoff.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate a knowledge of how to construct a takeoff obstruction chart and how to determine the required climb rate to clear obstacles within the takeoff climb zone.</td>
</tr>
<tr>
<td>Describe the procedures for performing a terminal approach.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate a knowledge of entry into the approach pattern, descent to the minimum maneuver altitude, the descent to minimum descent altitude (MDA), and when to execute missed approach.</td>
</tr>
<tr>
<td>Describe the procedures for performing a straight-in approach.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate a knowledge of how to fix the final fix inbound; descend in the pattern, when necessary; descend to MDA; and when to execute a missed approach.</td>
</tr>
<tr>
<td>TASK</td>
<td>CONDITION</td>
<td>TYPE INSTRUCTION</td>
<td>REFERENCES</td>
<td>TRAINING/EVALUATION STANDARDS</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>------------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>Describe the procedures for determining the approach safety zone.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate a knowledge of the dimensions and the orientation of the approach safety zone, how to analyze the area within the approach safety zone to determine the highest obstruction, and how to determine the MEA for the final leg of the route.</td>
</tr>
<tr>
<td>Describe the procedures for determining the minimum descent altitude for the approach.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate a knowledge of how to determine the highest obstruction within the approach safety zone. Using this information, determine the minimum descent altitude.</td>
</tr>
<tr>
<td>Describe the holding procedure.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate a knowledge of how to enter the holding pattern, the time of the inbound leg, direction of turn; how to determine the minimum maneuver altitude for holding, and size of the maneuver area.</td>
</tr>
<tr>
<td>Describe the missed approach procedure.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate a knowledge of when to execute the missed approach, the direction of turn, method of course interception, climb requirements, and size of the maneuver area.</td>
</tr>
<tr>
<td>Identify the categories of emergency procedures and describe the recommended actions.</td>
<td>Classroom</td>
<td>Conference</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate a knowledge of emergency conditions that may result from acquisition of the aircraft by threat weapons, loss of radio navigational aids, or aircraft deficiencies.</td>
</tr>
<tr>
<td>Perform tactical instrument takeoff.</td>
<td>A tactical instrument takeoff will be performed. Takeoff heading will be less than or greater than 90 degrees from the enroute course.</td>
<td>Practical Exercise</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate the proper procedure for an instrument takeoff, required rate of climb, course interception, and climb to minimum enroute altitude.</td>
</tr>
<tr>
<td>TASK</td>
<td>CONDITION</td>
<td>TYPE INSTRUCTION</td>
<td>REFERENCES</td>
<td>TRAINING/EVALUATION STANDARDS</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Perform enroute tactical Instrument navigation.</td>
<td>Aircraft or SFTS will be flown over tactical instrument route at minimum enroute altitude.</td>
<td>Practical Exercise</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate the proper procedures for deadreckoning and radio navigation, maintain required altitude, identify intersection or beacon passage, and attain accurate estimates of enroute time (+1 minute).</td>
</tr>
<tr>
<td>Perform tactical instrument approach (terminal).</td>
<td>A tactical instrument approach will be performed.</td>
<td>Practical Exercise</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate the proper procedure for entry into the approach pattern, descent to minimum maneuver altitude within the approach safety zone, descent to minimum descent altitude, tracking, transition to VFR flight, and execution of missed approach.</td>
</tr>
<tr>
<td>Perform tactical instrument approach (straight-in).</td>
<td>A tactical instrument approach will be performed.</td>
<td>Practical Exercise</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate the proper procedure for identifying the final fix, descent to minimum descent altitude, tracking, transition to VFR flight, execution of missed approach, and when necessary, entry into holding to descend to the minimum maneuver altitude prior to initiating approach.</td>
</tr>
<tr>
<td>Perform holding at the radio beacon or intersection.</td>
<td>Tactical holding will be performed.</td>
<td>Practical Exercise</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate the proper procedure for entry into the holding pattern, wind correction, and descent to minimum maneuver altitude.</td>
</tr>
<tr>
<td>Perform missed approach procedure.</td>
<td>Missed approach procedure will be performed following tactical approach.</td>
<td>Practical Exercise</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate the proper procedure for entry into the missed approach, direction of turn, climb to MEA, and interception of the enroute course.</td>
</tr>
<tr>
<td>Perform simulated emergency procedure.</td>
<td>Simulated emergency conditions will be performed.</td>
<td>Practical Exercise</td>
<td>FM 1-5, C1</td>
<td>The student must demonstrate a knowledge of the proper emergency procedures to be performed when confronted with an air defense emergency, loss of radio navigation aids, or aircraft deficiency.</td>
</tr>
</tbody>
</table>

The student must demonstrate the proper procedures for deadreckoning and radio navigation, maintain required altitude, identify intersection or beacon passage, and attain accurate estimates of enroute time (+1 minute).
APPENDIX A
REFERENCES

Department of the Army Pamphlets of the 310-series should be consulted frequently for latest changes or revisions of the references given in this appendix and for new publications relating to the material covered in this publication.

ARMY REGULATIONS (AR)
95-series (Aviation)
310-series (Military Publications)
310-25 Dictionary of United States Army Terms
310-50 Authorized Abbreviations and Brevity Codes

DEPARTMENT OF THE ARMY PAMPHLETS (DA PAM)
310-series (Military Publications Indexes)

FIELD MANUALS (FM)
1-1 Terrain Flying
1-30 Meteorology for Army Aviators
1-60 Airspace Management and Army Air Traffic in a Combat Zone
90-1 Employment of Army Aviation Units in a High Threat Environment

TRAINING CIRCULARS (TC)
1-88 Aviator's Recognition Manual

TECHNICAL MANUALS (TM)
TM 95-226 United States Standard for Terminal Instrument Procedures (TERPS)
MISCELLANEOUS PUBLICATIONS (MISC PUB)

AFM 51-40 Air Navigation, Departments of the Air Force and the Navy, 1 July 1973

DOD FLIP DOD Flight Information Publications (FLIP)

FAA 7110-65 Air Traffic Control
Transition/feeder 16-6, 18-7
Transponder 21-13
Vectors 21-7b
Weather: Ground 21-15
Radial 16-8a
Radiated test signal (VOT) 16-17

Radial

Radio: Cycle 15-2b
Frequencies 15-2e, 15-7 15-1, 15-4
Frequency modulation 15-6b
Principles 15-4-15-13
Receivers (See also Receivers) 15-6
Signal propagation 15-8-15-13
Transmitters 15-5
Wavelength 15-2d
Waves 15-2, 15-4

Radio magnetic indicator (A-DF) 16-5
Radio compass indicator (A-DF) 16-5, 17-3e
Radio magnetic indicator (RMl) 16-5, 17-3e 14-20
Ratio and proportion (CPU-26A/P) 14-3, 14-5
Real precession 2-8b(1) 2-5

Receivers:
ADF (ARN-59) 17-2, 17-3 17-1, 17-1
Checks 16-14 16-19
Dual 16-17
Glide slope 20-4b
Localizer 20-5b
Marker beacon 20-5
Radio principles 15-6
VOR 16-11, 16-13 16-11, 16-17

Recoveries from unusual attitudes:
Fixed wing 5-12 5-8
Common errors 5-12g 5-9
Rotary wing 5-26 5-17
Common errors 5-26e 5-18

Reference circles (See Circles: References)

Reference circles (See Circles: References)

References App A App A

Relative bearing:

Course interception 17-19, 17-20 17-12, 17-12
Homing 17-14 17-8
Maintaining a course 17-16, 17-17 17-8, 17-9
Orientation 17-13 17-8
Position fixing 17-18 17-11
Station passage 17-15 17-8
Time and distance 17-21 17-13

Relief
Revolution 10-4a 10-1
Rumb line 8-15 8-5
Rigidity in space (gyroscopic) 2-8a
RMl (See Radio magnetic indicator) 2-8a

Rose, compass 8-13 8-4
Rotation 8-2 8-1
Route selection App C App C
Runway visual range (RVR) 19-2b(12) 19-1

Safety instrument approach 18-24 18-14
Safety checks 3-6
S and S-1 maneuvers (See Proficiency maneuvers (fixed wing))

Scales:
Chart 9-2 9-1

CPU-26A/P computer 14-3a, 14-3b 14-1, 14-1
Sectional charts 9-10 9-6

Sectors:
Air traffic control 21-6 21-2
Holding pattern entry 19-12 19-7

Sensory illusions 3-1 3-1

Overcoming 3-6 3-3

Safety rules 3-6 3-3

Spatial disorientation 3-1a 3-1
Vertigo 3-1b 3-1

Servo failure 5-29 5-19

Signal patterns:
Glide slope ILS 20-4 20-4
Localizer, ILS 20-5a 20-5
Marker beacon 20-5 16-1

VOR 16-2 16-1

Signal propagation, radio 15-8-15-14 15-6-15-6
Skip distance 15-9 15-4
Skip zone 15-9 15-4

Slaved gyro compass system:
AN/ASN-13 and J-2 compass systems operation 2-22 2-12
Components 2-23 2-14

Slaved gyro magnetic heading indicator:
Course indicator ID-883 2-23d 2-14
Electric ID-567/ASN 2-23d 2-14
Radio magnetic ID-250/ARN 2-22 2-12
Radio magnetic ID-998/ASN 2-22 2-12

Small circles 8-6, 8-6 8-2, 8-2
Sphere 8-1, 8-6 8-1, 8-2
Spheroid 8-1 8-1

Standard: Instrument departures (SID) 21-8, App C 21-2, App C

Standard of atmosphere, US 2-28 2-16

Standard Terminal Arrival 18-5-18-5
Routes (STARS) 18-7 18-5

Static, radio 15-11 15-5
Station passage, VOR 16-10b 16-8
Statute mile 8-16b 8-6

Steep turns:
Fixed wing 5-8 5-5
Common errors 5-8b 5-6
Rotary wing 5-22 5-15
Common errors 5-22b 5-15

Right and level flight:
Fixed wing 5-4 5-1
Common errors 5-4f 5-2
Rotary wing 5-16 5-11
Common errors 5-16d 5-12

Straight climbs and descents
(fixed wing) 5-5 5-2
Common errors 5-5i 5-3

Standard climbs (rotary wing) 5-15 5-11
Common errors 5-15e 5-11

Standard descents (rotary wing) 5-17 5-13
Common errors 5-17d 5-13

Straight-in:
Approach 18-3 18-1
Clearance 18-3 18-1
Landing 18-3, 19-8 18-1

Surveillance radar 21-3 21-1

Swaying the magnetic compass 2-66 2-3
Symbols aeronautical chart 10-4 10-1
Table 2-1: Standard pressure and temperatures at 1,000-foot intervals

<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle of velocities</td>
<td>14-25, 14-30</td>
</tr>
<tr>
<td>Triangular pattern</td>
<td>21-12</td>
</tr>
<tr>
<td>Trim</td>
<td>4-3</td>
</tr>
<tr>
<td>Bank attitude</td>
<td>4-23</td>
</tr>
<tr>
<td>Pitch attitude</td>
<td>4-11</td>
</tr>
<tr>
<td>True airspeed</td>
<td>2-36c, 12-5, 2-23, 12-2, 13-6, App C, 13-3, App C</td>
</tr>
<tr>
<td>True attitude</td>
<td>2-33d, 2-22</td>
</tr>
<tr>
<td>Turn-and-slip indicator</td>
<td>2-19</td>
</tr>
<tr>
<td>Ball</td>
<td>2-21</td>
</tr>
<tr>
<td>Turn needle</td>
<td>2-20</td>
</tr>
</tbody>
</table>

Tactical Instrument Flight:

Aids, navigational	22-9c(2)
Altimeters	22-8, 22-13
Approaches	22-9c(1)
Communications	22-11d(6)
Course line, determining the	22-12
Definition	22-5
Employment, principles of	22-7
Flight clearance	22-7b
Flight-following	22-7b
Threat avoidance	22-7a
Flight routes selection	22-9a, b
Navigation, radio and dead-reckoning	22-14

Planning:

Preflight	22-11
Takeoff	22-15
Prerequisites	22-2

Procedures:

Approach	22-18
Missed	22-18
Safety zone, construction of	22-16(2)
Straight-in	22-16b
Terminal	22-16a
Emergency	22-19
Aircraft deficiency	22-19c
Air defense	22-19a
Radio navigational aids, loss of	22-19b
Holding	22-17
Threat	22-3, 22-7a
Training	22-6, 22-20, 22-2, 22-26, 22-21

Tailwind

| 13-2f, 13-6 | 13-2, 13-3 |

Takeoff, Instrument:

Fixed wing	5-3
Rotary wing	5-14
Teardrop turn	18-9c

Time—distance computations (CPU-26/A/P)

| 14-6 | 14-3 |

Time—distance to beacon (ADF)

| 17-11 |

Timed turns |

Fixed wing	5-9
Common errors	5-9e
Rotary wing	5-23
Common errors	5-23f

To-from indicator (VOR)

| 16-4b | 16-2 |

Tracking:

ADF	17-4
ILS localizer	20-3
Loop	17-25
VOR	16-9

Track interception (See Interception, track)

Traffic control centers, air route	21-2
Transmissometer	20-2b(2)
Transmitter	20-1
ADF	17-1
ILS glide slope	20-4
ILS localizer	20-3
VOR	16-2
Transponder, use of	21-13

Vacuum Attitude Indicator (See Attitude indicator, vacuum)

Vacuum drive gyros	2-10
Vacuum gage	2-10
Vacuum source	2-10
Vacuum system	2-10
Gage	2-10
Operating pressures	2-10
Source	2-10
Variation, magnetic	2-6a

INDEX-8
Cl. FM 1-5

Vectors:
- Radar: 21-15(5), 21-1
- Wind: 14-12, 14-12, 14-12, 14-12
- Velocities, triangle: 14-12, 14-12, 14-12

Velocity, wind (See Wind: Direction and speed)
- Vertical S and S-1: 6-2, 6-1
- Vertical speed indicator: 2-37, 2-23
- Construction: 2-23, 2-23
- IVSI: 2-39, 2-23
- Lag: 2-39, 2-23
- Operation: 2-38, 2-23
- Vertigo: 3-1b, 3-1
- Vestibular apparatus: 3-3, 3-1
- Vestibular illusions: 3-3b, 3-2
- Limitations: 3-5, 3-3

VHF omnidirectional range (See VOR)
- VHF propagation: 15-13, 15-5
- Victor airways: 16-11, 16-11
- Vision: 3-2, 3-1
- Visual illusions: 3-2b, 3-1
- Voice communications (See Radio: Communications)
- Voice procedures (See Radio: Communications)

VOR (VHF omnidirectional range):
- Approach:
 - Charts: 18-6, 19-2, 18-5, 19-1
 - Clearance: 19-4, 19-3
 - Final: 19-7, 19-6

Holding: 18-14—18-10—18-23, 18-14, 19-1, 19-3
Missed approach: 18-13, 19-9, 18-7, 19-6
Procedure turn: 18-8—18-12, 18-6—18-7
Transmitter: 16-2, 16-1

Warning flags:
- Course indicator (VOR): 16-4, 16-1
- Glide slope: 16-4d, 16-3
- Wavelength: 15-2d, 15-1
- Wave, radio: 15-2a, 15-4, 15-1, 15-1
- Wave transmission: 15-2, 15-1

Weather:
 Effect:
 - Low level navigation: 10-17, 10-11
 - Terrain appearance: 10-7, 10-4
 - Flight planning: App C, App C
 - Radar: Ground: 21-15—21-7
 - Static: 15-11, 15-6

Wind:
- Crosswind: 13-2f, 13-6, 13-2, 13-3
- Direction and speed: 13-1, 13-1
- Downwind: 13-4, 13-3
- Drift: 13-2b, 13-4, 13-1, 13-3
- Drift correction (See Drift correction)
- Headwind: 13-2f, 13-6, 13-2, 13-3
- Tailwind: 13-2f, 13-6, 13-2, 13-3
- Triangle: 14-23, 14-12, 14-12
- 14-24, 14-30, 14-17
- Upwind: 13-4, 13-3
- Vectors: 14-23, 14-12
- Velocity computation (CPU-26A/P): 14-28, 14-14

World aeronautical chart: 9-11, 9-6
INSTRUMENT FLYING AND NAVIGATION FOR ARMY AVIATORS

PART ONE. ATTITUDE INSTRUMENT FLYING

CHAPTER 1. INTRODUCTION .. 1-1—1-3 1-1

2. FLIGHT INSTRUMENTS AND SYSTEMS 2-1

Section I. The Magnetic Compass .. 2-1—2-5 2-1
II. Gyroscopic Principles .. 2-6—2-8 2-4
III. Gyroscopic Instrument Power Sources 2-9—2-11 2-6
IV. Gyro Heading Indicator ... 2-12, 2-13 2-6
V. Attitude Indicators ... 2-14—2-18 2-8
VI. Turn-and-Slip Indicator ... 2-19—2-21 2-11
VII. Slaved Gyro Compass Systems 2-22—2-24 2-11
VIII. The Pitot-Static System .. 2-25—2-27 2-15
IX. The Pressure Altimeter .. 2-28—2-33 2-16
X. The Airspeed Indicator ... 2-34—2-36 2-22
XI. The Vertical Speed Indicator ... 2-37—2-41 2-23

CHAPTER 2. SENSATIONS OF INSTRUMENT FLYING 3-1—3-5 3-1

Section I. Disorientation and the Illusions of Flight 3-1—3-5 3-1
II. Overcoming Sensory Illusions ... 3-6 3-3

CHAPTER 3. POWER, PITCH ATTITUDE, AND BANK CONTROL THROUGH INSTRUMENTS FOR FIXED AND ROTARY WING AIRCRAFT 4-1—4-3 4-1

Section I. General .. 4-1—4-3 4-1
II. Power Control .. 4-4—4-10 4-2
III. Pitch Attitude Control .. 4-11—4-18 4-6
IV. Bank-Attitude Control .. 4-19—4-26 4-9

CHAPTER 4. BASIC INSTRUMENT MANEUVERS 5-1—5-12 5-1

Section I. Fixed Wing .. 5-1—5-12 5-1
II. Rotary Wing ... 5-13—5-29 5-9

CHAPTER 5. PROFICIENCY MANEUVERS (FIXED WING) 6-1—6-4 6-1

PART TWO. AIR NAVIGATION

CHAPTER 6. GENERAL ... 7-1, 7-2 7-1

8. BASIC CONCEPTS OF AIR NAVIGATION 8-1—8-4 8-1

Section I. The Earth in Space .. 8-1—8-4 8-1
II. Measuring Position on the Earth 8-5—8-11 8-2
III. Measuring Direction on the Earth 8-12—8-15 8-4
IV. Measuring Distance on the Earth 8-16, 8-17 8-5

CHAPTER 7. NAVIGATION CHARTS ... 9-1—9-9 9-1

Section I. Chart Projections .. 9-1—9-9 9-1
II. Aeronautical Charts .. 9-10—9-14 9-6

CHAPTER 8. CHART READING, PILOTAGE, AND NAVIGATION FOR TERRAIN FLYING ... 10-1—10-9 10-1

Section I. Chart Reading and Pilotage 10-1—10-9 10-1
II. Navigation While Terrain Flying 10-10—10-18 10-4

CHAPTER 9. PLOTTING AND MEASURING 11-1—11-4 11-1

12. INSTRUMENTS USED FOR DEAD RECKONING NAVIGATION 12-1—12-8 12-1

13. WIND AND ITS EFFECTS .. 13-1—13-7 13-1

14. THE DEAD RECKONING (DR) COMPUTER 14-1—14-3 14-1

Section I. General .. 14-1—14-3 14-1
II. The Slide Rule Face ... 14-3—14-20 14-1
III. Grid Side of the DR Computer 14-21, 14-22 14-10
IV. Wind Triangles ... 14-23, 14-24 14-12
V. Wind Problems .. 14-25—14-30 14-13

CHAPTER 10. RADIO PRINCIPLES .. 15-1—15-14 15-1

16. VHF OMNIDIRECTIONAL RANGE SYSTEM (VOR) 16-1—16-5 16-1

Section I. Components and Operation 16-1—16-5 16-1
II. Flight Procedures Using the VOR 16-6—16-13 16-6
III. Receiver Checks .. 16-14—16-20 16-19
IV. VOR Station Classification .. 16-21, 16-22 16-20

CHAPTER 11. ADF AND MANUAL LOOP PROCEDURES 17-1—17-3 17-1

Section I. Characteristics and Components 17-1—17-3 17-1
II. Automatic Direction Finder Flight Procedures 17-4—17-11 17-1

* This manual supersedes TM 1–215, 8 September 1964 and TM 1–225, 9 December 1968, including all changes.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Description</th>
<th>Paragraphs</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III.</td>
<td>Automatic Direction Finder Flight Procedures Using Relative Bearings</td>
<td>17-12—17-21</td>
<td>17-8</td>
<td></td>
</tr>
<tr>
<td>IV.</td>
<td>Manual (Loop) Operation of the ARN-59</td>
<td>17-22—17-26</td>
<td>17-14</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 18</td>
<td>INTRODUCTION TO INSTRUMENT APPROACH PROCEDURES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section I</td>
<td>Instrument Approaches</td>
<td>18-1—18-4</td>
<td>18-1</td>
<td></td>
</tr>
<tr>
<td>II.</td>
<td>Feeder Routes/Standard Terminal Arrival Routes (STARS)</td>
<td>18-5—18-7</td>
<td>18-4</td>
<td></td>
</tr>
<tr>
<td>III.</td>
<td>Procedure Turns</td>
<td>18-8—18-13</td>
<td>18-6</td>
<td></td>
</tr>
<tr>
<td>IV.</td>
<td>Holding</td>
<td>18-14—18-24</td>
<td>18-10</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 19</td>
<td>VOR AND NDB APPROACHES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section I</td>
<td>Approach Charts</td>
<td>19-1, 19-2</td>
<td>19-1</td>
<td></td>
</tr>
<tr>
<td>II.</td>
<td>Typical VOR Approach</td>
<td>19-3—19-9</td>
<td>19-3</td>
<td></td>
</tr>
<tr>
<td>III.</td>
<td>Typical NDB Approach Using ADF Procedures</td>
<td>19-10—19-15</td>
<td>19-6</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 20</td>
<td>INSTRUMENT LANDING SYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section I</td>
<td>General</td>
<td>20-1, 20-2</td>
<td>20-1</td>
<td></td>
</tr>
<tr>
<td>II.</td>
<td>Operation and Flight Use</td>
<td>20-3—20-10</td>
<td>20-2</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 21</td>
<td>RADAR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section I</td>
<td>Air Traffic Control Radar</td>
<td>21-1—21-3</td>
<td>21-1</td>
<td></td>
</tr>
<tr>
<td>II.</td>
<td>Radar Air Traffic Control Procedures</td>
<td>21-4—21-12</td>
<td>21-1</td>
<td></td>
</tr>
<tr>
<td>III.</td>
<td>Transponder Operations</td>
<td>21-13, 21-14</td>
<td>21-6</td>
<td></td>
</tr>
<tr>
<td>IV.</td>
<td>Ground Weather Radar</td>
<td>21-15—21-17</td>
<td>21-7</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 22</td>
<td>TACTICAL NAVIGATION AND INSTRUMENT FLIGHT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>REFERENCES</td>
<td>22-1—22-8</td>
<td>22-1</td>
<td></td>
</tr>
<tr>
<td>B.</td>
<td>ATC SHORTHAND SYMBOLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.</td>
<td>IFR FLIGHT PLANNING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.</td>
<td>FM HOMING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.</td>
<td>CLIMB CHARTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDEX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table contains a list of chapters and sections with their respective paragraphs and page numbers. The text is structured in a logical manner, with each chapter addressing specific topics related to navigation and instrument flight procedures.
CHAPTER 22
TACTICAL NAVIGATION AND INSTRUMENT FLIGHT

22-1. General

It is essential that Army aviation elements be able to provide firepower, movement of troops, logistical support, and surveillance and reconnaissance for the ground tactical elements of the Army even during periods of adverse weather when visual flight for all portions of a mission is impossible, un dependable, or is questionable. Tactical situations can be expected to require the commander to use his aviation assets within the threat environment during instrument meteorological conditions. In order to survive during such missions, aviation units must operate under instrument conditions at altitudes well below the altitudes specified in civil instrument flight rules. While standard civil rules may be compatible with threat conditions in rear areas, they will be inadequate for forward areas. Tactical instrument flight provides the means to insure maximum support of ground tactical units by allowing aircraft to move about the battlefield even in adverse weather under high threat conditions. Survivability will require techniques which go beyond the use of today's conventional airways and navigational aids. Sophisticated approach procedures and equipment will not be available. Instead, sophisticated flight will be performed under austere conditions requiring the highest level of aviator proficiency rather than equipment. Aircraft will operate routinely at reduced altitudes with minimum navigational aids and minimum air traffic control facilities and regulations. Increased dependence on preflight planning and aircrew proficiency will be essential to accomplish the mission using the tactical instrument mode of flight. Commanders will consider tactical instrument flight to be a basic aviator qualification and will train their aviators to achieve an acceptable level of proficiency.

As an example, imagine the following tactical situation. An emergency exists in the forward area of the battlefield. Several outposts along the general outpost line (GOPL) are under attack and have received heavy enemy pressure. They are unable to break contact with the enemy and are expected to be overrun soon unless extracted. You, as an aviator, have been assigned the mission to extract and reposition the outposts. To complete the mission, you must fly low-level to a location just short of the forward edge of the main battle area and then use nap-of-the-earth (NOE) altitudes to the GOPL for the extraction. Presently, you are located at a basefield in the division rear area.

The weather is forecast to remain marginal until your intended departure time. You plan your mission accordingly. Shortly after takeoff from the basefield, you encounter "0-0" conditions due to heavy fog which precludes even NOE flight. However, you have radio contact with the unit at the FEBA and it reports that the ceiling there has lifted to 200 to 400 feet overcast—acceptable visual flight conditions. The problem that faces you now, is how to get from your present location to the forward area where visibility exists that will allow mission completion and then return to the basefield. Will you cancel the mission due to the weather? Will you wait for conditions to improve and risk the outposts being overrun in the meantime? Neither of these courses of action are suitable solutions. How can you proceed with the mission even in the adverse weather condition? How can you return to the basefield or a refuel or rearm point after completing the mission?

Since you knew while planning the mission that the weather was marginal and forecast to remain the same, you were able to plan ahead and develop a tactical instrument flight plan at an altitude which was commensurate with intelligence indications of enemy air defense threat capabilities within your area of operation. You made contact with units along your intended flightpath and at the destination and arranged to have small man-portable pathfinder beacons deployed at preplanned locations. Confirmation of their placement and operation was received. You then coordinated instructions for their activation and deactivation (upon request only, or activation at a preselected time). As a standard operating procedure, you planned your tactical instrument flight as a backup for visual flight in the event weather prohibited using visual flight. You were able to plan the flight, using the lowest possible safe altitude, to the vicinity of the FEBA where adequate ceiling and visibility conditions existed and to execute a letdown approach to VFR conditions. Upon completing your mission, your plan provided for return to the rear area or to an alternate or subsequent location to perform other missions as needed.
This chapter discusses some of the basic considerations, principles, and procedures that are an integral part of planning and conducting tactical instrument flight in a high threat environment. A model tactical instrument system is described in paragraph 22-8. This method is the first of its kind for the United States Army. It is presented as a model to be used, modified, tested, and improved upon as appropriate. When more suitable systems tailored to the tactical environment and the mission requirements are developed through troop use, they also will be published.

22—2. Definition

Tactical instrument flight is defined as flight under instrument meteorological conditions in an area directly affected by the threat. It is used as a normal means to complete assigned missions when ceiling or visibility conditions preclude visual flight or normal regulated IFR flight.

22—3. Capabilities

Tactical instrument flight provides the commander the capability to extend aviation operations against the enemy during periods of severely reduced visibility. It is a forward area operational capability. Using tactical instrument flight, the commander can accomplish a mission under instrument meteorological conditions in a high threat environment that could not be accomplished utilizing other flight techniques. It is also possible for the aviator to transition from conventional instrument flight in rear areas to low altitude operations in forward areas where enemy electronic warfare (EW) capabilities and weapons threaten. A combination of terrain flight and tactical instrument flight will enable aerial scouts to provide reconnaissance and early warning, attack helicopters to provide firepower, and utility and cargo helicopter operations to continue, even under extremely low visibility conditions. All aircraft operating in forward areas should plan on the possibility of transitioning from VFR tactical operations to and from tactical IFR flight to enhance mission accomplishment and tactical staying power.

22—4. Threat

Aviation operations against an enemy equipped with sophisticated air defense and electronic weapons will be significantly affected by the following factors. The commander may be faced with any of the following, singly or in combination, and must consider these factors in planning and execution of air operations.

- Air-to-air weapons.
- Surface-to-surface weapons.
- Surface-to-air missiles.
- Air-to-ground missiles.
- Jamming of aircraft traffic management systems.
- Jamming of command and control frequencies.
- Monitoring of communications among aircraft traffic by the enemy.
- Monitoring command control radio nets by the enemy.
- Helicopter attacks on helicopters.
- High-performance aircraft attacks on helicopters.

22—5. Training

Tactical instrument flight can be successfully accomplished through diligent and thorough training of aircrews, air traffic management, and pathfinder personnel. Through testing, training, and practice, the capability can become a reality. Tactical instrument flight training not only should familiarize aviators with the principles and employment of tactical instrument flight in the high threat environment, it must teach them to execute an instrument flight and approach into a landing zone (LZ) utilizing minimum electronic communication and navigation devices and that such flight can be accomplished safely. Unit training must be oriented toward accomplishment of the unit’s mission under adverse weather and threat conditions with a minimum of assistance from electronic communication and navigation devices. Air traffic management and pathfinder personnel, as well as aircrews, also must be integrated into the training. Units must incorporate tactical instrument functions into their everyday missions. Flying at lower altitudes, minimal use of available navigation and communication equipment, detailed premission planning, and postmission debriefing are training practices that can be used on a routine basis during normal operations. Training must emphasize flexibility in order for aviation elements to be able to respond quickly and reliably in a wide range of adverse weather situations.

22—6. Basic Principles

Because tactical instrument flight on a high threat battlefield will be required for successful around-the-clock operations, it must be a standard, well-rehearsed technique in which aircrews are highly proficient. Radio navigation routes for aircraft to follow at survivable altitudes and approach facilities in the area of operation must be established.
Flight-following procedures must be established and used when possible to assist aviation crews. These procedures should reveal little to the natural and electronic listening devices of the enemy, yet be sufficiently practical for the aircraft to reach the target or destination and return. In addition to the expected air defense mission deterrents on the high threat battlefield, the enemy can jam, monitor, and acquire as potential targets, friendly electronic navigational communication devices and radar emitters. This threat makes minimum communications, preferably radio silence, a requisite for aviation operations and dictates the basic doctrine of orienting all signal-emitting devices away from the FEBA, moving them frequently, and activating them only when necessary.

Tactical instrument flight should be controlled primarily through the use of standing operating procedures (SOP). An example of a typical SOP for planning and flying a mission using tactical instrument procedures is at paragraph 22-8. It is mandatory that procedures be established and exercised and that aircrews and air traffic management personnel be thoroughly trained before this type of flying is conducted on the battlefield. Some of the more significant basic principles that must always be considered are discussed in this chapter. The combat situation will impose variations on procedures, but the basic principles and considerations will remain essentially unchanged.

22-7. Basic Considerations

a. Flight Altitudes. Flight altitudes will be dictated by the enemy air defense threat. The limits will be less than those specified in AR 95-1 and may be as close to the ground as the terrain obstacles permit. Figure 22-1 shows an example of how the air defense threat will appear on the modern battlefield. The illustration graphically shows the relationship of standard instrument flight and tactical instrument flight to the air defense threat and terrain obstacle clearance considerations. The overriding concern in tactical instrument flight is to remain below the enemy air defense threat and continue to maintain a safe altitude above terrain obstacles in order to complete the mission. As the aviator flies toward the forward edge of the battle area (FEBA), he must...
lower the flight altitude in order to remain below the air defense threat. He can use standard instrument flight rules and procedures in rear areas where the effective range of the enemy air defense missiles and other weapons do not threaten. Of course, the aviator must constantly be alert to the threat of possible communications jamming and monitoring throughout the battle area. Nearer the FEBA he will encounter the range of the enemy early warning and tracking radar. It is important for the aviator to be aware of when he is in this radar range even though he is still outside the effective range of the enemy air defense missiles and other weapons. Although he may be beyond the range of ground-based weapons, he may be engaged by enemy aircraft. The aviator may still be able to use standard instrument flight procedures in this area but should be transitioning to the lower flight altitudes of tactical instrument flight.

As the aviator continues to move forward toward the FEBA, he will come within the effective range of the air defense weapons. At this point he must always remain low enough to avoid acquisition by the early warning and tracking radar. In doing so, he must reduce the flight altitude to a level below the enemy threat, yet high enough to provide a safe clearance of terrain obstacles. Naturally, as the aviator flies toward the FEBA, the capability of the enemy radar to acquire him will continue to increase even at lower levels. The aviator must continue to adjust his altitude and flight route accordingly to remain below this threat or to be masked by the terrain.

Upon reaching the forward area or the destination point, the aviator will use a tactical instrument beacon to make the approach if visual flight (VFR) conditions have not been encountered. If VFR conditions are encountered at the destination, then the aviator will make the approach visually and use terrain flying to continue the mission and to avoid the enemy threat.

Conversely, as the aviator flies from a forward location toward the rear of the battlefield, he can progressively increase the flight altitude to provide an added terrain obstacle clearance safety margin, yet remain below the air defense threat.

Echelon or unit forward or rear boundaries cannot be used as a reliable indication of the altitude to be flown to avoid the enemy air defense threat since these boundaries are highly mobile and are not always the same distance from the FEBA or subject to the same terrain formations. The unit boundaries depicted on figure 22-1 are presented only to show how the threat will increase as the aviator flies nearer the FEBA and is forced to select lower flight altitudes. Each mission requiring the use of tactical instrument flight must be individually planned and an appropriate altitude profile planned to remain clear of both the threat and terrain obstacles.

b. Flight Routes. The current threat situation, terrain, and weather will directly affect route selection. In addition, the route navigational facilities must be mobile and highly responsive. Routinely, they must be capable of rapid displacement on short notice to provide support for a tactical instrument flight. Air traffic management personnel can expect to move their equipment as frequently as every 4 hours, if necessary, to avoid enemy electronic detection and to prevent repeated use of the same airspace. Factors that must be considered in establishing tactical instrument flight routes include:

(1) Terrain and threat. Straight-line flight between takeoff point and destination will be precluded in many instances by both the terrain and the enemy air defense threat. In selecting the flight route, the aviator must carefully analyze the threat as it affects potential flight routes. In most instances, the threat will be the overriding factor in dictating (or limiting) flight routes. Consistent with the threat, the aviator must then make a thorough map reconnaissance of the possible routes to the destination and return to determine the best route which will provide threat avoidance and terrain obstacle clearance. Efforts should be made to use terrain for masking from the enemy threat whenever possible, especially in the more forward areas of the battlefield. In tactical instrument flight, terrain obstacles can serve as valuable assets to deny enemy electronic detection just as they are used for concealment and masking during visual terrain flying.

After selecting potential routes based on the enemy threat and terrain obstacle considerations, the aviator must then consider other factors that will affect his choice of a route.

(2) Navigational aids. The availability and location of navigational aids will be a significant factor in route selection. Premission planning and briefings, whether in VFR or IFR flight, should include the exact location and availability of aids to navigation and how they can be used to support the tactical instrument flight. En route nav aids farther from the FEBA may be relatively easy to coordinate, locate and use; however, as the navaid location is nearer the FEBA, availability as well as flexibility of a navaid may well be limited by the intensity of the fighting and the density of other air traffic. Planning must include provisions for alternate nav aids when available and if the alternate navaid will still contribute to the
completion of the mission. An alternate termination point or letdown navaid should not be used if it will not contribute to mission accomplishment or provide visual flight conditions to the intended destination. Planning must include navigational aids for the return flight, if necessary.

(3) Communications. The enemy will employ highly sophisticated electronic warfare systems. Defeating this capability and protecting aviation assets will require maximum tactical ingenuity and resourcefulness. One of the most effective tactics will be to keep radio communications to the minimum. This can be accomplished through the use of arm and hand signals, lights, and SOP. In selecting a route, communications security and a capability for maintaining communications should be prime considerations. Using terrain to mask the aircraft from possible acquisition by the enemy early warning radar may also mask the aircraft from navaids and from communications with friendly units. Routes should be selected which provide reliable communications whenever feasible considering also the threat and the terrain.

c. Approaches. Tactical instrument flight approaches will vary considerably in their sophistication and reliability. Conventional ground-controlled and ILS approaches may be used when available. However, because of the dynamics of future battlefields, these sophisticated facilities will be available only in rear areas. Approaches in forward battle areas will more likely be limited to using area surveillance radar, nondirectional beacons, and FM homing until a tactical derivation of the National Microwave Landing System becomes available. The altitude to which descent can be made will depend on factors such as crew proficiency, aircraft instrumentation, approach navaids, terrain, and visibility. The ultimate goal of an approach is to allow the aircraft to descend through restrictive weather conditions to an altitude where conditions exist that will permit mission accomplishment. Regardless of the kind of approach, the navigational aid at the letdown point should be oriented so that it emits its signal away from the FEBA in order to minimize enemy detection.

In rear areas where standard instrument flight procedures may be followed, ground-controlled approach (GCA) radar can be used for instrument approaches. However, in the forward areas, the limited availability of GCA equipment and the most intense electronic enemy threat will make the aviator primarily dependent on low power nondirectional beacons to aid in the instrument approach and letdown to visual flight conditions. Approaches using FM homing should be used only when an emergency situation exists and the aviator is highly proficient.

Tactical instrument flight approaches may be classified according to facilities as follows:

—Class I—Approach using ground-controlled approach (GCA) or a derivative of the National Microwave Landing System with its distance-measuring equipment. Guidance to the ground is reliable with no minimum required for properly trained aviators in appropriately instrumented aircraft and Air Traffic Management (ATM) personnel trained in installation and operation of the equipment.

—Class II—Approach using one of the following: An instrument landing system, an area surveillance radar, or a nondirectional beacon. Centerline guidance is reliable with a positive position indication (fix) prior to start of letdown. Descent to 50 feet above ground level (AGL) is allowed for properly trained ATM personnel and aviators using appropriately instrumented helicopters. Visibility must be such that aviators can proceed visually following the approach.

—Class III—Approach using FM homer. Reliability of directional guidance and station-passage indication close to station is questionable. Descent altitude is dependent on terrain, and visibility conditions must be such that aviators can operate visually before touching down or continuing the mission. Aviators and ATM personnel must be highly proficient.

d. Navigational Aids. Because of the threat in forward areas of the battlefield, it will not be possible to operate navaids full time. Operating nondirectional beacons and surveillance radar navaids full time risks enemy acquisition of both the navaid and the aircraft as targets, or of having the enemy disrupt the mission by jamming the navaid signal. All reasonable means should be used to minimize the time that navigational aids emit a signal. In rear areas where more sophisticated navaids can be used along with standard instrument flight rules, efforts should also be made to limit the signal transmission time to only those times when needed as an aid. In the fast-moving and increased threat environment nearer the FEBA, the limited low-power beacons and navaids should be operated intermittently or only upon request as a standard procedure to lessen the chance of enemy detection. In this austere situation, aviator proficiency and knowledge of the capabilities and characteristics of the navaids are important.

Research and development efforts are continually striving to provide more advanced, portable navi-
Tactical and navigational aids to supplement the requirements of tactical instrument flight.

(1) Radio Beacon Set, AN/TRN–80(XE–1)V. One of the latest innovations is the portable Radio Beacon Set, AN/TRN–30(XE–1)V currently used by field units. It transmits a homing signal that can be used in conjunction with the airborne direction finder (ADF) sets AN/ARN–59 and AN/ARN–83 installed in most Army helicopters. The radio beacon set provides an amplitude-modulated (AM) radio frequency signal on any one of 964 channels in the frequency range from 200 to 535.5 kHz and 1605 to 1750.5 kHz in tunable increments of 500 Hz.

The range of the beacon depends upon the weather and configuration of its operation. The beacon can be used in two basic configurations:

(a) Pathfinder. In this mode the system is a low-power, short-range, man-portable direction finder beacon. This equipment will be used in this mode extensively in intermediate and the most forward areas to lessen the chance of enemy detection and provide the greatest degree of flexibility and transportability. In most cases, the aviator will be required to track outbound on a stronger navaid located in a rear area until he is close enough to intercept and use an intermediate low-power beacon en route to the FEBA where he will receive and use a reliable signal from another low-power beacon operating in the pathfinder mode.

(b) Tactical and semi-fixed. In these modes, the beacon is located at a semi-fixed facility and operated at medium to high power. These modes include the basic man-portable radio, a power supply, and an amplifier. In these modes the beacon is used in rear areas for instrument flight en route to and returning from forward locations. The beacon will generally be located beyond the effective range of long-range enemy artillery and emits a signal strong enough to assist in transit to and from tactical instrument flight using low-power beacons. Even though the beacon operated in these modes is located in a semi-fixed rear location, it also will be operated intermittently or on request to reduce the electronic signature and to reduce its desirability as an enemy target for long-range weapons.

(c) The capabilities of the AN/TRN–30(XE–1)V are shown below. The range data in the pathfinder mode is based on conventional tracking methods at altitudes less than 500 feet AGL. In the tactical and semi-fixed modes, the range data is based on flight at altitudes of 500 feet AGL and higher. At the low altitudes we expect to fly near the FEBA, the aviator cannot receive the tactical beacons at conventional distances. At altitudes of 200 to 500 feet above the highest obstacle (AHO) over uneven, broken, or rolling terrain, the mean reliability distance of the beacon in the pathfinder mode is a maximum of 15 km using the 15-foot mast antenna; however, at altitudes above 500 feet (AHO) the signal reliability increases. Additional altitude or increased antenna height does not significantly affect reliable reception distance at altitudes lower than 500 feet above the highest obstacle. If care is taken to position beacons requiring maximum reception distance on dominating terrain, the reliable reception distances may be increased. Conversely, if a lesser reception distance is adequate and usable, the signal may be masked by positioning the beacon in low terrain. As a general rule for planning purposes, the ranges listed below should be used.

(2) FM homing. FM homing can be used as an emergency tactical instrument navigational aid to serve as a backup in the event the onboard ADF equipment malfunctions or the ground-based non-directional beacon becomes unreliable or inoperative. In tactical instrument flight, as in visual terrain flying, it is extremely important for the aviator to remain aware of his position as closely as possible at all times in the event he must resort to emergency backup homing procedures. By knowing his position and using FM homing as an emergency navaid, the aviator can home:

—To an alternate FM transmitter location in order to encounter VFR flight conditions when onboard equipment malfunctions.
—To the original point of departure in order to use an operational or more reliable ground-based navaid.

As a general rule, FM homing should be used only as backup navaid to return the aircraft to VFR conditions or to a rear area.
(3) Night operation aids. Tactical instrument flight at night is conducted primarily in the same manner as it is conducted in the day. However, during transition from tactical instrument flight to visual flight at the point of letdown, a light source must be present to provide a visual reference point for the aviator. The lighted “T,” “Y,” or similar reference symbol may be used. If the landing site is located at a location other than the letdown point, a second light source to assist in landing is also necessary.

22–8. Flight Planning Procedures

Standard operating and planning procedures should be established in individual units to insure complete and thorough premission tactical instrument flight planning. The importance of detailed planning prior to conducting a tactical instrument flight cannot be overemphasized since both successful mission accomplishment and crew survival will depend heavily on the degree of prior planning. The procedures and steps outlined and discussed in this paragraph can be used as a guide or sample Standard Operating Procedures (SOP) for the lowest echelon units and modified to meet specific mission requirements and unit needs. Because of the wide range of planning considerations and significance of each consideration, a standard procedure or checklist is an essential item to be used in the unit. Each individual step in the planning process should be followed from a standard procedure or checklist with nothing committed to memory or left to chance. The thoroughness required in the planning process for tactical instrument flight cannot be overstressed.

a. Essential Planning Considerations. In planning prior to a tactical instrument flight or a visual flight when resort to IFR flight is a possibility, the aviator should use a checklist to aid in planning and to insure completeness. The essential planning considerations listed here can be used as a checklist and expanded or modified as the specific mission requirements dictate. This checklist of planning considerations is in no way all-encompassing and can be improved with use. However, it does provide the fundamental points that must be considered in planning the flight.

(1) Operations.

(a) Mission requirements. The first step in planning for the tactical instrument flight is to analyze the mission in order to determine all the requirements that are inherent in it. For example, knowing if the mission is a single aircraft flight, a multiple aircraft operation, or a multiple sortie mission will significantly affect the aviator's planning process. Analyzing the mission as a first step will insure that all subsequent necessary steps are taken and unnecessary steps omitted.

(b) Operations/intelligence briefing. A complete briefing by the operations officer or his representative is a keystone in the planning process. Information to be sought includes:

—Threat information: Threat information should be kept available that is specifically applicable to the area of operations. This data should include types of weapons, air defense weapons and missiles, effective range of weapons, detection and acquisition ranges, a record of "shot at" reports, and other pertinent threat information that may affect the unit mission. It is imperative that threat data be kept up-to-date so that the mission can be accomplished with minimum risk of hostile interference. The threat situation is a primary factor and affects all other mission planning steps.

—Friendly forces: Location, identification, and posture of friendly supporting/supported forces is essential information. En route and terminal planning depends heavily on the friendly force situation. Unexpected movements of units or the supported unit can be critical to mission accomplishment using tactical instrument flight.

(c) Frequencies and call signs. Insure that communications-electronics operation instruction (CEOI) information is current and communications with navigational aids can be established and maintained.

(d) Weather information. As in any form of instrument flight, weather information is critical. Current weather information should be maintained for the area of operations and may depend heavily on forward ground weather reports by untrained observers. Weather information may be obtained through division artillery elements if more formal weather information sources are not available. Wind information is extremely important to flight planning. Wind conditions at the point of departure, en route, and at the termination point must be obtained and rechecked immediately prior to departure. For planning purposes, surface winds should be used.

(2) Map study/analysis.

(a) Route selection. A detailed map study is necessary to determine the best possible route or routes that will contribute most readily to mission accomplishment. Primary, alternate, and return routes must be selected based on analysis of the following factors:

—Enemy air defense threat: Map study is necessary to plot the route that provides the maximum concealment and masking from hostile air defense weapons.

—Terrain obstacles and hazards: Prominent terrain obstacles and features must be iden-
tified and plotted. This allows steps to be taken to avoid hazards and also to use the features to the best advantage for masking.

—Navigational aids requirements: During this phase of planning, the aviator determines and coordinates his requirements for navigational aids with those navaids available to him for use. Detailed map study will allow the aviator to plan the use of navigational aids to insure reliable reception distances or plan for “dead spots” when he will dead-reckon navigate until intercepting a reliable signal. He may need to re-route or modify the plan based on the navigational aids that can be used. At the earliest possible time, the aviator must coordinate his route and navigational aids needs with the operations in order to allow the maximum reaction and movement time by forward navaid and air traffic management elements. Alternate navaid facilities should also be considered and coordinated during this phase of planning.

(b) Flight altitudes. Terrain and obstacles, along with the enemy air defense threat, determine the altitude the aviator will fly using tactical instrument procedures. Map analysis is the primary source for determining a flight altitude that provides clearance and obstacle avoidance along the selected route.

—Altimeter setting: Elevation data obtained from the map will be the primary input for altimeter settings whenever up-to-date barometric pressure information is not available. Even when reliable altimeter settings can be obtained from meteorological sources, the aviator must carefully calculate altimeter indication variations to insure terrain or obstacle clearance. Altimeter mechanical error, changes in meteorological conditions, and irregular vegetation on the terrain can combine to produce a significant difference between the indicated altitude and the actual height above the terrain. Insuring that the altimeter is set to the terrain elevation, learned from close and intensive map study, can be a valuable aid in holding altimeter error to a minimum. When aircraft are equipped with radar altimeters, altitude verification can be made at known map locations when in flight.

—En route and approach minimums: In the absence of standard, published en route and approach diagrams, map study is the only way the aviator has to determine clearance altitudes en route and to calculate safe letdown minimum altitudes for his approach at the destination.

(c) Navigation preplanning. A thorough map study prior to a tactical instrument flight can make navigation and inflight tasks much easier. For example, a knowledge of the terrain throughout the area of operations can be obtained before-hand by becoming familiar with all the major terrain features. By doing this, the amount of time spent referring to the map during flight can be reduced appreciably. Additionally, the aviator is much better prepared to cope with unexpected changes in the flight by having a prior knowledge of his surroundings.

Fuel requirements must be established and planned during this phase of the flight planning. Map study—coupled with wind information—provides the aviator an early indication of fuel requirements so that he can plan routes and refueling stops as necessary. Time-distance computations to assist in navigation can be accomplished as a result of the map study.

(d) Magnetic conversion and deviation. A significant error can result if the planner fails to convert grid azimuths to magnetic azimuths and then to apply the specific aircraft compass deviation information while performing and using map study and analysis. To determine the correct compass heading required to maintain the desired true course, use the following formula:

\[\text{TC} \pm \text{VAR} = \text{MC} \]
\[\text{MC} \pm \text{WIND DRIFT} = \text{MH} \]
\[\text{MH} + \text{DEV} = \text{CH} \]

(3) Equipment requirements.

(a) Maps and navigational aids. The aviator must make an inventory to insure that all map sheets and charts or aids to navigation are present for the flight.

(b) Aircraft equipment. Weight and balance computations, performance charts, and special mission equipment should be checked and secured during this part of planning. Survival equipment, a necessity for all modes of flight, should also be checked for the mission.

b. Planning a Basic Model. The method for conducting a tactical instrument flight discussed here is one possible way to perform the mission in IFR conditions using a minimum number of navigational aids. It discusses the flight from the first steps in planning to the termination. You may be able to improve on this method in order to tailor it or similar methods to fit your standing operating procedures and mission needs.

(1) En route planning.

(a) One navaid beacon (fig 22-2).

Step 1—The pilot first identifies the takeoff point (T) and the beacon location (L) on a standard 1:50,000 tactical map. Once these points have been determined, the course line is drawn connecting the two points.

Step 2—Determine the total distance from (T) to (L) in kilometers (km). Normally, the total
distance (D) should not exceed 30 km. Because the reliable reception distance of the beacon signal is approximately 15 km, it is necessary to use "dead-reckoning" navigation initially. Using dead-reckoning for a distance more than 15 km before receiving a reliable signal may allow the aircraft to exceed the limits of the safety zone. If the total course distance is greater than 30 km, then a second beacon should be used at the takeoff point or at an intermediate location.

Note. The planning figure for reliable reception of the navaid beacon is based on the reliable reception distance of the AN/TRN-30(XE-1)VI operating on the pathfinder mode (see chart in para 22-7d) which is approximately 15 km at an altitude below 500 feet above the terrain. This reliability figure is obtained by locating the beacon at a relatively low elevation using a 15-foot mast. This obscures the beacon signal by surrounding terrain and obstacles to the least reliable distance. The beacon may be located on the highest terrain and use a 30-foot mast to increase the potential reliable reception distance; however, this also will increase the chances of enemy detection, jamming, or destruction. For flight planning purposes, then, the least reliable reception distance should be used.

Step 3—Construct a safety zone with the course line as the center. Construct a safety zone 1/5 as wide as the total distance (D) from (T) to (L). The safety zone should extend along the course line to a point 15 km prior to reaching (L). This is the point where reliable reception (R) can be expected. From that point, the safety zone tapers to a width of 2 km at the beacon location (L).

Step 4—Study the entire area encompassed by the safety zone and locate the highest terrain or obstacle. Once the highest obstacle is determined, add an additional 400 feet. This altitude is the recommended en route safe minimum clearance altitude for the tactical instrument flight using current aircraft instruments and navaids.

Note. The recommended safe minimum clearance altitude of 400 feet above the highest obstacle (AHO) incorporates a safety margin for the variables of altimetry (altimeter error—mechanical or induced), vegetation and manmade obstacle elevations not depicted on tactical maps, and pilot error. At 200 feet AHO, the lowest beacon reliable reception altitude, there is no adequate safety margin for the variables. Altimetry, vegetation, and obstacles can amount to greater than 100 feet. Flights at 300 feet AHO would be satisfactory without considering potential pilot error. To allow for pilot error, an additional 100 feet is added as a safety margin; making the recommended safe minimum clearance altitude 400 feet AHO.

However, depending on the type of terrain (flat desert, broken woodlands, or mountainous), the safe minimum clearance altitude for flight planning purposes can and should be adjusted commensurate with the threat and terrain. For example, the safety margin can be reduced over flat desert terrain since vegetation or manmade obstacles are usually absent; in mountainous terrain the margin may need to be increased to provide for unexpected downdrafts and unexpectedly high terrain obstacles.

(b) One beacon in the vicinity of the arrival point and one beacon en route (fig 22-3).

Step 1—Identify the takeoff point (T), the location of the intermediate beacon (L1) and the
location of the beacon at the letdown point (L2). Draw the course line connecting these points.

Step 2—Determine the distance of the first leg (D1) from (T) to (L1). This distance should not exceed 30 km.

Step 3—Determine the distance of the second leg (D2) from (L1) to (L2). This distance should not exceed 45 km.

Note. For planning purposes, the distance (D2) between the intermediate beacon (L1) and the terminal beacon (L2) can be as great as 45 km. This requires that the aviator track outbound for 15 km from L1, dead-reckon for 15 km, until intercept of L2, and track inbound on the reliable signal for 15 km.

Step 4—The safety zone for the first leg (T) to (L1) is again constructed to be as wide as 1/5 the en route course leg length. For example, the width of the safety zone is 6 km since the total distance from (T) to (L1) is 30 km. The safety zone extends along the course line to the point of reliable
reception (R). From that point, the safety zone tapers to a width of 2 km at the intermediate beacon (L1).

Step 5—The safety zone for the second leg is constructed along the course line from (L1) to (L2). The point of reliable reception (R1) for the intermediate beacon is located along the course line 15 km from (L1). The point of reliable reception (R2) for the beacon at the letdown point is located 15 km from (L2). The width of the safety zone from (R1) to (R2) must be ⅓ of the distance of the second leg (D2). From (R1) the safety zone tapers to 2 km at the intermediate beacon (L1). From (R2) the safety zone tapers to 2 km at the letdown point beacon (L2).

Step 6—Study the entire area encompassed by both safety zones to determine the highest obstacle. Once the highest obstacle has been determined, add 400 feet to that altitude to obtain the safe minimum clearance altitude. If there is a difference in the resulting en route altitude on the two legs of flight, the pilot must determine the rate of climb/descent necessary to clear obstacles at station passage of the intermediate beacon to transition to the remaining en route altitude. Routes should be selected to take advantage of the lowest terrain and obstacles in order to remain below the enemy air defense threat.

Note. This same procedure is used for planning a flight with a beacon at the takeoff point and one at the letdown point.

(2) Takeoff planning. After en route planning is completed, begin the takeoff and climb planning. Planning for the takeoff should include all the factors of a normal VFR takeoff, i.e., wind direction, longest axis of the area, barriers and their effect on a takeoff path, and power required. In addition, since the takeoff may be an instrument takeoff, pilots must evaluate the terrain around their climbpath. The tactical situation may be an influencing factor on takeoff planning and
require that the takeoff be made over the least desirable terrain or away from the en route flight-path.

Whenever possible, takeoffs should be made on the heading that will maintain the desired course. However, if this is not possible, there are simple procedures that will allow the pilot to establish himself on course. If there is a navigational aid at the takeoff point, after takeoff establish the en route course by standard tracking procedures back to the beacon. It may be necessary for a mission to require a takeoff from a location without a navaid. This requires the pilot to establish his course by dead-reckoning until a navaid can be received some distance after takeoff.

Step 1—The first step in planning a takeoff is to establish a 6 km square clear zone around the takeoff point. Study this area and identify the highest obstruction within it. Also, determine the desired takeoff path considering all the factors previously discussed.

Step 2—Draw the takeoff climbpath on the tactical map and a takeoff climb zone 15° either side of the climbpath (fig 22-4). Mark key obstructions and terrain elevation in the 6 km square clear zone and the takeoff climb zone and convert these altitudes to heights above the takeoff point. Check each significant elevation with the climb safety chart to see that a climb can be completed in the desired direction of takeoff (fig 22-5). The

Takeoff climb path at 60 k & 300 fpm rate of climb.

Figure 22-5. Takeoff obstruction chart.

Note: Representative data charts for Army helicopters are provided in Appendix E. This chart is constructed from representative data to be used as a planning guide only, and is not to be substituted for pilot judgment and appropriate publication performance charts. The line on the chart represents the line of flight at 60 knots and a 300 fpm rate of climb. Army aircraft have the capability of performing better; however, this rate of climb provides a reasonable safety margin.
takeoff climb zone should be adjusted laterally to place significant obstacles outside the climb zone. If the climb zone cannot be adjusted laterally to exclude all such obstacles, then consideration must be given to adjusting the rate of climb to insure obstacle clearance.

Execution:

Note. The chart in figure 22-5 is presented solely as an aid in visualizing how obstacle clearance affects takeoff planning in the climb safety zone. It should be used only as a planning guide and should not be substituted for pilot judgment and using the appropriate technical reference publications and performance charts for the specific aircraft.

Instrument takeoff (ITO) technique for tactical flight differs only slightly from normal procedures. Before takeoff, the pilot must check his hover power and go-no-go limitations. Due to the nature of the takeoff, location, and limited nav-aids, climbs should be made as quickly as power permits. Initially, the pilot will use 5 pounds torque above that required to hover; then, after the climb is established and airspeed is increased, use maximum rates of climb as described in appropriate performance charts. During the takeoff, 60 kt IAS is a suitable airspeed to be used until the en route altitude is reached.

There are two primary reasons for using 60 kt IAS during the climb:

—At slower airspeeds, less terrain is covered during the climbing maneuvers. This is important because of the limited area of protected airspace around the takeoff point.

—This airspeed also offers an average optimum airspeed for climb performance.

Figure 22-6. Takeoff to intercept en route course.
When an altitude of 100 feet above the highest obstruction (minimum obstruction clearance altitude—MOCA) in the 6 km clearance zone is obtained, the pilot can turn to intercept the desired en route course. The method he uses to intercept the course may be varied with experience, but the following are general guidelines for this procedure (fig 22-6):

- When takeoffs are made on headings within 90° of the en route course, a direct turn to the en route course heading will be made after reaching MOCA. Planning for winds, magnetic deviation, and variation will allow the pilot to remain well within the limits of the planned course over short distances even without receivable navaids. Pilots should try techniques of dead-reckoning navigation to build confidence in this method during VFR conditions before attempting actual IFR. If a navaid is present at the takeoff point, standard tracking procedures should be used to intercept and track outbound on the en route course.

- If a takeoff is to be made more than 90° from the en route course heading, a teardrop turn may be used to reverse the direction and establish the course heading. During the takeoff, time the climb to the MOCA, and then execute a 210° turn. Fly this heading, continuing climb to the en route altitude if necessary, for the same amount of time required to climb to MOCA, then turn to course. This turn should be made into the wind if a takeoff is made with a crosswind component to reduce the terrain covered during the turn. This procedure is much like a teardrop turn used in holding pattern entry and will place the aircraft at altitude generally over the takeoff point where the en route course can be established. If a navaid is at the takeoff point, use standard tracking procedures to return to the beacon and track outbound on the desired en route course.

(3) Approach Planning.

(a) Corridor approach (fig 22-7). This approach is used when a secondary beacon (L) is available to provide intersection information along the course line prior to reaching the en route course beacon. The main advantage of this approach is that it can be planned and executed at any location along the course line between (R) and (L) provided that a secondary beacon (L) is available. Through the use of the two beacons, the letdown and approach can be executed at a location where it is otherwise impossible or impractical to position a terminal beacon for tactical or geographical reasons.

Step 1—Complete en route planning steps.

Step 2—Determine the location along the course between the reliable reception point (R) and the beacon (L) where the letdown and approach are to be made.

Step 3—Plot the location of the secondary beacon (L). Due to the low en route altitude (400 feet AHO) and its effect on signal reliability, the secondary beacon must be positioned within a reliable reception distance of the en route course. Since reliable reception is desirable prior to reaching the planned letdown point, the secondary beacon should be no more than approximately 10 km from the corridor letdown and approach point.

Step 4—Plot a radial from the secondary beacon (L) to intersect with the course line as close to a 90° angle as possible and at least 2 km short of the termination point. Because of the low altitude and potentially weak reliability of the secondary beacon, a 90° angle will make fixing the intersection more accurate because of the smaller ADF needle fluctuations. At the approach airspeed of 60 kt and rate of descent of 200 to 300 fpm, the aircraft will arrive at the MDA after traveling approximately 1½ km when the approach is initiated at the intersection.

Step 5—Study the area around the termination point and locate the highest obstacle. Once the highest obstacle is determined, add 200 feet; this altitude becomes the MDA. The MDA compensates for altimeter error, lack of current altimeter setting information at the approach location, vegetation elevation, and potential pilot error.

Step 6—Plan the missed approach to take advantage of the lowest obstacles. Establish a missed approach safety zone by drawing a rectangular 6 km x 3 km missed approach safety zone on the side of the en route course with the lowest obstacles or on the side for which the missed approach is planned. The en route course side of the missed approach safety zone should be centered on the termination point.

Execution: The pilot tunes the secondary beacon at a predetermined time to locate his position relative to the intersection. Upon fixing the intersection, the pilot will initiate the letdown using 60 kt IAS and a slow rate of descent (200 to 300 fpm) to the MDA. If VFR conditions are not encountered upon reaching the MDA and termination point, the pilot should execute the missed approach by climbing at the maximum rate of climb (check performance charts) and turning at a standard rate to return to and intercept the en route course. The climb should be continued until the en route altitude is reestablished. Execute the preplanned actions for either proceeding to an alternate location or returning to the point of departure.
(b) Spiraling approach (fig 22-8). This approach uses a beacon at the letdown or approach point and requires a minimum of planning.

Step 1—Complete necessary en route planning steps.

Step 2—Plot an approach clearance zone with the terminal beacon at the center. The approach clearance zone should be a square with sides of 3 km x 3 km when en route altitude is 400 feet AHO. Thereafter, the size of the approach clearance zone should be increased by 1 km for
each additional 200 feet of altitude to a maximum size of 6 km x 6 km.

Step 3—Determine the MDA by studying the map for the highest obstacle within the approach clearance zone. After elevation of the highest obstacle has been determined, add an additional 200 feet and the resulting altitude will become the MDA. The lowest descent altitude (200 feet AHO) compensates for both altimeter error and lack of current altimeter setting (failing to determine current altimeter setting prior to takeoff). However, the study of the approach clearance zone should be accomplished with utmost care, since room for error is marginal.

Execution: The pilot will track inbound to the terminal beacon en route, taking care to compensate for even the smallest perceptible deviations from course line. Upon indication of station passage, the pilot will:
1. Immediately reduce power to approximately 10 lbs torque (preparatory to attaining a descent speed of 60 kt).

2. Simultaneously begin a turn (left or right) utilizing a 20° angle of bank and continue to decelerate to 60 kt indicated airspeed.

3. Establish descent at 300 fpm.

The copilot will perform a prelanding check and notify the pilot when approaching his MDA. The pilot will continue the descent and turn and, upon establishing VFR conditions, will immediately descend to NOE altitudes and adjust his airspeed as necessary. If VFR conditions are not established before or upon reaching the MDA, the pilot will continue the turn and apply power as necessary to achieve a 500 fpm rate in a spiraling climb. The climbing turn will be continued until reaching en route altitude at which time the pilot will roll out on the reciprocal of his en route heading and reestablish his course outbound.

The spiraling approach may be made using FM homing during an emergency situation when either the navaid or the onboard ADF becomes inoperative or unreliable. Using FM homing, the spiraling approach should be initiated whenever the pilot determines (as close as possible) that station passage has occurred. After station passage, the spiraling approach is executed as described previously. Missed approach procedures require that FM homing be used to return to a VFR condition or a rear location where a more reliable navigational aid is available.

Even in winds as adverse as 35 kt and descents from as much as 1,000 feet, the diameter of the spiral will not exceed 1,000 meters and the spiral will not be displaced from the beacon by an appreciable amount. However, the pilot should be aware that 60 kt and 20° angle of bank controls the radius of the spiral and should be strictly adhered to. Additionally, the pilot should perform the decelerate, turn, and reduction of power as simultaneously as possible.
APPENDIX A

REFERENCES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR 95-series</td>
<td>Aviation-Series</td>
</tr>
<tr>
<td>FM 1-30</td>
<td>Meteorology for Army Aviators</td>
</tr>
<tr>
<td>TM 11-2557-26</td>
<td>United States Standard for Terminal Instrument Procedures (TERPS)</td>
</tr>
<tr>
<td>TM 11-2557-29</td>
<td>Terminal Air Traffic Control Manual</td>
</tr>
<tr>
<td>TM 11-2557-30</td>
<td>En Route Air Traffic Control Manual</td>
</tr>
<tr>
<td>AFM 51-40</td>
<td>Air Navigation, Departments of the Air Force and the Navy, 1 July 1973</td>
</tr>
<tr>
<td>DOD FLIP</td>
<td>DOD Flight Information Publications (FLIP)</td>
</tr>
<tr>
<td>FAA 7110.8D</td>
<td>Terminal Air Traffic Control Handbook, Department of Transportation, Federal Aviation Administration</td>
</tr>
<tr>
<td>FAA 7110.9C</td>
<td>En Route Air Traffic Control Handbook, Department of Transportation, Federal Aviation Administration</td>
</tr>
</tbody>
</table>
Figure E-1. Climb chart, CH-54 A, B (standard day).
<table>
<thead>
<tr>
<th>PRESSURE ALTITUDE (FT)</th>
<th>A/C</th>
<th>IAS AT BEST RATE OF CLimb (KTS)</th>
<th>RATE OF CLimb (FPM)</th>
<th>DESIGN GROSS WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,000</td>
<td>CH 47 A</td>
<td>80</td>
<td>1,200</td>
<td>33,000</td>
</tr>
<tr>
<td>4,000</td>
<td>CH 47 B</td>
<td>78</td>
<td>644</td>
<td>40,000</td>
</tr>
<tr>
<td>4,000</td>
<td>CH 47 C</td>
<td>84</td>
<td>910</td>
<td>46,000</td>
</tr>
</tbody>
</table>

Figure E-2. Climb chart, CH-47 A, B, C (standard day).
Figure E-8. Climb chart, AH-1G and UH-1H (standard day).
Figure E-4. Climb chart, OH-58A and OH-6A (standard day).

<table>
<thead>
<tr>
<th>Pressure Altitude (FT)</th>
<th>A/C</th>
<th>IAS at Best Rate of Climb (KTS)</th>
<th>Rate of Climb (FPM)</th>
<th>Design Gross Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,000</td>
<td>OH 58 A</td>
<td>60</td>
<td>850</td>
<td>3,000 (Cbr=2,700)</td>
</tr>
<tr>
<td>4,000</td>
<td>OH 6 A</td>
<td>53</td>
<td>1,200</td>
<td>2,400</td>
</tr>
</tbody>
</table>
Table 2-1: Standard pressure and temperatures at 1,000-foot intervals

Tactical navigation and instrument flight:

<table>
<thead>
<tr>
<th>Description</th>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altimeters</td>
<td>22-7a</td>
<td>22-3</td>
</tr>
<tr>
<td>Approaches</td>
<td>22-7c, 22-8, 22-7</td>
<td>22-3</td>
</tr>
<tr>
<td>Basic principles</td>
<td>22-6</td>
<td>22-2</td>
</tr>
<tr>
<td>Capabilities</td>
<td>22-3</td>
<td>22-2</td>
</tr>
<tr>
<td>Climb charts:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH-54 A, B (standard day)</td>
<td>E-1</td>
<td>App E-1</td>
</tr>
<tr>
<td>CH-47 A, B, C (standard day)</td>
<td>E-2</td>
<td>App E-2</td>
</tr>
<tr>
<td>AH-1G and UH-1H (standard day)</td>
<td>E-3</td>
<td>App E-3</td>
</tr>
<tr>
<td>OR-58 and OH-6A (standard day)</td>
<td>E-4</td>
<td>App E-4</td>
</tr>
<tr>
<td>Communications</td>
<td>22-7b(3)</td>
<td>22-5</td>
</tr>
<tr>
<td>Definition</td>
<td>22-2</td>
<td>22-2</td>
</tr>
<tr>
<td>Employment</td>
<td>22-5</td>
<td>22-2</td>
</tr>
<tr>
<td>Flight planning procedures</td>
<td>22-8</td>
<td>22-7</td>
</tr>
<tr>
<td>Navaisals</td>
<td>22-7b(2), 22-4, 22-5</td>
<td>22-7d</td>
</tr>
<tr>
<td>Route selection</td>
<td>22-7b(1)</td>
<td>22-4</td>
</tr>
<tr>
<td>Takeoff obstruction</td>
<td>22-8</td>
<td>22-7</td>
</tr>
<tr>
<td>Takeoff planning</td>
<td>22-8</td>
<td>22-7</td>
</tr>
<tr>
<td>Threat</td>
<td>22-4, 22-7, 22-2, 22-3</td>
<td>22-5</td>
</tr>
<tr>
<td>Training</td>
<td>22-6</td>
<td>22-2</td>
</tr>
<tr>
<td>Tailwind</td>
<td>13-2, 13-6, 13-2, 13-3</td>
<td></td>
</tr>
<tr>
<td>Takeoff, instrument:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed wing</td>
<td>5-3</td>
<td>5-1</td>
</tr>
<tr>
<td>Rotary wing</td>
<td>5-14</td>
<td>5-10</td>
</tr>
<tr>
<td>Teardrop turn</td>
<td>18-9c</td>
<td>18-6</td>
</tr>
<tr>
<td>Time—distance computations</td>
<td>14-6</td>
<td>14-3</td>
</tr>
<tr>
<td>(CPU-26A/P)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time—distance to beacon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADF</td>
<td>17-11</td>
<td>17-8</td>
</tr>
<tr>
<td>VOR</td>
<td>16-13</td>
<td>16-17</td>
</tr>
<tr>
<td>Timed turns:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed wing</td>
<td>5-9</td>
<td>5-5</td>
</tr>
<tr>
<td>Common errors</td>
<td>5-9e</td>
<td>5-6</td>
</tr>
<tr>
<td>Rotary wing</td>
<td>5-23</td>
<td>5-15</td>
</tr>
<tr>
<td>Common errors</td>
<td>5-23f</td>
<td>5-16</td>
</tr>
<tr>
<td>To-from indicator (VOR)</td>
<td>16-4b</td>
<td>16-2</td>
</tr>
<tr>
<td>Tracking:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADF</td>
<td>17-4</td>
<td>17-1</td>
</tr>
<tr>
<td>ILS localizer</td>
<td>20-3</td>
<td>20-2</td>
</tr>
<tr>
<td>Loop</td>
<td>17-25</td>
<td>17-15</td>
</tr>
<tr>
<td>VOR</td>
<td>16-9</td>
<td>16-6</td>
</tr>
<tr>
<td>Track interception (See Interception, track)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic control centers, air route</td>
<td>21-2</td>
<td>21-1</td>
</tr>
<tr>
<td>Transmissometer</td>
<td>20-2b(2)</td>
<td>20-1</td>
</tr>
<tr>
<td>Transmitter:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADF</td>
<td>17-1</td>
<td>17-1</td>
</tr>
<tr>
<td>ILS glide slope</td>
<td>20-4</td>
<td>20-4</td>
</tr>
<tr>
<td>ILS localizer</td>
<td>20-3</td>
<td>20-2</td>
</tr>
<tr>
<td>VOR</td>
<td>16-2</td>
<td>16-1</td>
</tr>
<tr>
<td>Transponder, use of</td>
<td>21-13</td>
<td>21-6</td>
</tr>
<tr>
<td>Triangle of velocities</td>
<td>14-25, 14-30, 14-13, 14-17</td>
<td>14-25</td>
</tr>
<tr>
<td>Triangular pattern</td>
<td>21-12</td>
<td>21-6</td>
</tr>
<tr>
<td>Trim</td>
<td>4-8</td>
<td>4-1</td>
</tr>
<tr>
<td>Bank attitude</td>
<td>4-23</td>
<td>4-11</td>
</tr>
<tr>
<td>Pitch attitude</td>
<td>4-11</td>
<td>4-5</td>
</tr>
<tr>
<td>True airspeed</td>
<td>2-36c, 12-5, 2-23, 12-2, 13-6, App C</td>
<td>13-5, App C</td>
</tr>
<tr>
<td>True altitude</td>
<td>2-33d</td>
<td>2-22</td>
</tr>
<tr>
<td>Turn-and-slip indicator</td>
<td>2-19</td>
<td>2-11</td>
</tr>
</tbody>
</table>

Turns:

Banking (See Bank control)

Climbing (rotary wing) 5-24 5-16
Common errors 5-24c 5-16
Climbing and descending
(fixed wing) 5-10 5-6
Common errors 5-10b 5-6
Compass:

Fixed wing 5-11 5-6
Common errors 5-11d 5-8
Rotary wing 5-21 5-15
Common errors 5-21 5-15
Descending (rotary wing) 5-25 5-16
Common errors 5-25c 5-17

Level:

Fixed wing 5-6 5-3
Common errors 5-6e 5-3
Rotary wing 5-19 5-14
Common errors 5-19b 5-14

Procedure (See Procedure turns)

Steep:

Fixed wing 5-9 5-5
Common errors 5-9e 5-6
Rotary wing 5-23 5-15
Common errors 5-23f 5-16

To headings (gyro):

Fixed wing 5-7 5-4
Common errors 5-7c 5-4
Rotary wing 5-20 5-14
Common errors 5-20b 5-15

UHF propagation 15-13 15-5
Units (measurement) 8-16 8-6

Unusual attitudes and recoveries:

Fixed wing 5-12 5-8
Common errors 5-12g 5-9
Rotary wing 5-26 5-17
Common errors 5-26e 5-18

Upwind 13-1, 13-4k 13-1, 13-3

Vacuum attitude indicator (See Attitude indicator, vacuum)

Vacuum drive gyros 2-10 2-6
Vacuum gage 2-10 2-6
Vacuum source 2-10 2-5

Vacuum system:

Gage 2-10 2-6
Operating pressures 2-10 2-6
Source 2-10 2-6

Variation, magnetic 2-6a 2-3

Vectors:

Radar 21-1b(5) 21-1
Wind 14-23 14-12

Velocities, triangle 14-23, 14-24, 14-12, 14-17

Velocity, wind (See Wind: Direction and speed)

Vertical S and S-1 6-2 6-1
Vertical speed indicator 2-37 2-23
Adjustment 2-40 2-23
<table>
<thead>
<tr>
<th>Paragraph</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>2-37 2-23</td>
</tr>
<tr>
<td>IVSI</td>
<td>2-41 2-24</td>
</tr>
<tr>
<td>Lag</td>
<td>2-39 2-23</td>
</tr>
<tr>
<td>Operation</td>
<td>2-38 2-23</td>
</tr>
<tr>
<td>Vertigo</td>
<td>3-16 3-1</td>
</tr>
<tr>
<td>Vestibular apparatus</td>
<td>3-3 3-1</td>
</tr>
<tr>
<td>Vestibular illusions</td>
<td>3-36 3-2</td>
</tr>
<tr>
<td>Limitations</td>
<td>3-5 3-3</td>
</tr>
<tr>
<td>VHF omnidirectional range (See VOR)</td>
<td></td>
</tr>
<tr>
<td>VHF propagation</td>
<td>15-13 15-5</td>
</tr>
<tr>
<td>Victor airways</td>
<td>16-11 16-11</td>
</tr>
<tr>
<td>Vision</td>
<td>3-2 3-1</td>
</tr>
<tr>
<td>Visual illusions</td>
<td>3-26 3-1</td>
</tr>
<tr>
<td>Voice communications (See Radio: Communications)</td>
<td></td>
</tr>
<tr>
<td>Voice procedures (See Radio: Communications)</td>
<td></td>
</tr>
<tr>
<td>VOR (VHF omnidirectional range):</td>
<td></td>
</tr>
<tr>
<td>Approach:</td>
<td></td>
</tr>
<tr>
<td>Charts</td>
<td>18-6, 19-2 18-5, 19-1</td>
</tr>
<tr>
<td>Clearance</td>
<td>19-4 19-3</td>
</tr>
<tr>
<td>Final</td>
<td>19-7 19-5</td>
</tr>
<tr>
<td>Holding</td>
<td>18-14 18-10—</td>
</tr>
<tr>
<td></td>
<td>18-23, 18-14, 19-6 19-5 19-3</td>
</tr>
<tr>
<td>Missed approach</td>
<td>18-13, 19-9 18-7, 19-6</td>
</tr>
<tr>
<td>Procedure turn</td>
<td>18-8—18-12 18-6—18-7</td>
</tr>
<tr>
<td>Transmitter</td>
<td>16-2 16-1</td>
</tr>
<tr>
<td>Warning flags:</td>
<td></td>
</tr>
<tr>
<td>Course indicator (VOR)</td>
<td>16-4 16-1</td>
</tr>
<tr>
<td>Glide slope</td>
<td>16-4d 16-3</td>
</tr>
<tr>
<td>Wavelength</td>
<td>15-2d 15-1</td>
</tr>
<tr>
<td>Wave, radio</td>
<td>15-2a, 15-4 15-1, 15-1</td>
</tr>
<tr>
<td>Wave transmission</td>
<td>15-2 15-1</td>
</tr>
<tr>
<td>Weather:</td>
<td></td>
</tr>
<tr>
<td>Effect:</td>
<td></td>
</tr>
<tr>
<td>Low level navigation</td>
<td>10-17 10-11</td>
</tr>
<tr>
<td>Terrain appearance</td>
<td>10-7 10-4</td>
</tr>
<tr>
<td>Flight planning</td>
<td>App C App C</td>
</tr>
<tr>
<td>Radar: Ground</td>
<td>21-15—21-7</td>
</tr>
<tr>
<td>Static</td>
<td>15-11 15-5</td>
</tr>
<tr>
<td>Wind:</td>
<td></td>
</tr>
<tr>
<td>Crosswind</td>
<td>13-2f, 13-6 13-2, 13-3</td>
</tr>
<tr>
<td>Direction and speed</td>
<td>13-1 13-1</td>
</tr>
<tr>
<td>Downwind</td>
<td>13-4 13-3</td>
</tr>
<tr>
<td>Drift</td>
<td>13-2b, 13-4 13-1, 13-3</td>
</tr>
<tr>
<td>Drift correction (See Drift correction)</td>
<td></td>
</tr>
<tr>
<td>Headwind</td>
<td>13-2f, 13-6 13-2, 13-3</td>
</tr>
<tr>
<td>Tailwind</td>
<td>13-2f, 13-6 13-2, 13-3</td>
</tr>
<tr>
<td>Triangle</td>
<td>14-23, 14-12, 14-12</td>
</tr>
<tr>
<td></td>
<td>14-24, 14-30 14-17</td>
</tr>
<tr>
<td>Upwind</td>
<td>13-4 13-3</td>
</tr>
<tr>
<td>Vectors</td>
<td>14-23 14-12</td>
</tr>
<tr>
<td>Velocity computation (CPU-26A/P)</td>
<td>14-28 14-14</td>
</tr>
<tr>
<td>World aeronautical chart</td>
<td>9-11 9-6</td>
</tr>
</tbody>
</table>